基于粒子滤波算法的疲劳裂纹扩展预测方法
收稿日期: 2013-03-14
修回日期: 2013-07-31
网络出版日期: 2013-09-04
基金资助
国家杰出青年基金(51225502);国家自然科学基金重点项目(50830201);江苏省优势学科创新平台
A Fatigue Crack Growth Prediction Method Based on Particle Filter
Received date: 2013-03-14
Revised date: 2013-07-31
Online published: 2013-09-04
针对飞机故障预测和健康管理系统中提出的损伤扩展预测与结构剩余寿命管理的要求,提出了一种粒子滤波与结构健康监测方法相结合的结构疲劳裂纹扩展预测方法。首先采用ABAQUS_Python二次开发软件,实现了对裂尖奇异单元网格的自动划分,进而得出不同裂纹长度、角度下裂纹尖端处的应力强度因子幅,提出采用二参数的Paris规则建立粒子滤波的状态方程,即损伤及寿命的扩展演化模型;采用基于压电元件和主动Lamb波的结构健康监测方法,实时观测更新裂纹信息并同粒子滤波算法相结合,建立了粒子滤波的观测方程。疲劳载荷作用下的裂纹扩展实验结果表明,20 000次循环载荷后预测裂纹扩展长度误差在2%以内。本文方法可以有效预测结构裂纹的扩展,消除Paris规则预测裂纹扩展的误差累积及工程应用中多种不确定性的影响。
袁慎芳 , 张华 , 邱雷 , 杨伟博 . 基于粒子滤波算法的疲劳裂纹扩展预测方法[J]. 航空学报, 2013 , 34(12) : 2740 -2747 . DOI: 10.7527/S1000-6893.2013.0357
Prognostics and health management systems in aircraft pose requirements for damage propagation prediction and structure residual life management. In this paper a method is proposed for predicting fatigue crack propagation based on the particle filter and structural health monitoring. First the crack-tip singular element mesh is generated by using ABAQUS_Python secondary development software and then the crack tip stress intensity factor range of different crack lengths and angles is calculated, while the two parameters Paris rules are used as the state equation of the particle filter, which is the damage propagation and life evolution model. By using the method of structural health monitoring based on piezoelectric elements and active Lamb waves, the state of the crack can be updated online, and combined with the particle filter, an observation equation is established. The experimental results show that the error of crack length after 20 000 load cycles is less than 2%. The method proposed in this paper can effectively predict crack propagation, and eliminate the error accumulated by Paris rule prediction and reduce various uncertainties in engineering application.
[1] Charles F, Francois H, Gyuhae P, et al. Developing impact and fatigue damage prognosis solutions for composites. Journal of the Minerals, Metals and Materials Society, 2007, 56(3): 40-42.
[2] Shalabh G, Ray A. Real-time fatigue life estimation in mechanical structures. Measurement Science and Technology, 2007, 18(7): 1947-1957.
[3] Mark S. A survey of data-driven prognostics. AIAA-2005-7002, 2005.
[4] Yan Z Q, Jiang Y J, Xie H W. MS-NHPP model and Bayesian analysis for multistage reliability growth with hybrid fix modes. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 785-790. (in Chinese) 闫志强, 蒋英杰, 谢红卫. 多阶段含延缓纠正可靠性增长的MS-NHPP模型及其Bayes分析. 航空学报, 2010, 31(4): 785-790.
[5] Frank G. A stochastic approach to determine lifetimes and inspection schemes for aircraft components. International Journal of Fatigue, 2008, 30(1): 138-149.
[6] Cobb A C, Michaels J E, Michaels T. An integrated approach to local ultrasonic monitoring of fastener hole fatigue cracks. The Aeronautical Journal, 2009, 113(1144): 775-788.
[7] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[8] Arnaud D, Simon G, Christophe A. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(1): 197-208.
[9] Marcos O, Wu B Q, George V. A particle filter framework for failure prognosis. Proceedings of WTC2005, World Tribology Congress Ⅲ, 2005.
[10] Enrico Z, Giovanni P. Particle filtering prognostic estimation of the remaining useful life of nonlinear components. Reliability Engineering and System Safety, 2011, 96(3): 403-409.
[11] Sankararaman S, Ling Y, Shantz C, et al. Uncertainty quantification in fatigue damage prognosis. Annual Conference of the Prognostics and Health Management Society, 2009.
[12] Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution. International Journal of Fatigue, 2009, 31(3): 476-487.
[13] Cao J, Yuan S F, Cai J, et al. Real-time structural health monitoring for fatigue crack growth. Piezoelectectrics & Acoustooptics, 2008, 30(6): 776-778. (in Chinese) 曹俊, 袁慎芳, 蔡健, 等. 疲劳裂纹扩展的实时健康监测. 压电与声光, 2008, 30(6): 776-778.
[14] Yuan S F, Qiu L, Wang Q, et al. Application research of a hybrid piezoelectric-optic fiber integrated structural health monitoring system. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 348-356. (in Chinese) 袁慎芳, 邱雷, 王强, 等. 压电-光纤综合结构健康监测系统的研究及验证. 航空学报, 2009, 30(2): 348-356.
[15] Qiu L, Yuan S F, Wang Q, et al. Design and experiment of PZT network-based structural health monitoring scanning system. Chinese Journal of Aeronautics, 2009, 22(5): 505-512.
[16] Dong M G, Wang N. Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Applied Mathematical Modelling, 2011, 35(3): 1024-1035.
/
〈 | 〉 |