基于过载对虚拟路径变上限积分的变节点IDVD算法

  • 赵继广 ,
  • 闫梁
展开
  • 装备学院

收稿日期: 2013-01-25

  修回日期: 2013-08-28

  网络出版日期: 2013-09-02

Variable Node IDVD Based on Variable Upper Limit Integral of Overload on the Virtual Arc

  • ZHAO Ji-Guang ,
  • YAN Liang
Expand

Received date: 2013-01-25

  Revised date: 2013-08-28

  Online published: 2013-09-02

摘要

针对 IDVD(Inverse Dynamics in the Virtual Domain)轨道优化算法中节点等距分布导致其使用率低的问题,提出了一种变节点 IDVD 轨道优化实时算法。该算法基于过载对虚拟路径的变上限积分,先后进行两次优化,将固定节点、固定步长的 IDVD 转化为变节点、变步长的 IDVD。与应用 IDVD 算法拦截上升段弹道导弹的两个实例进行对比研究,在总节点数相同的情况下,变节点 IDVD 比 IDVD 方法计算的弹道误差标准差在 X、Y、Z 轴降低了约20%,优化时间缩短了约20%。研究结果表明:变节点 IDVD 算法能够按照虚拟路径曲率的大小自适应分配节点,有效提高了节点的使用率,继而提高了弹道计算精度,缩短了在线优化时间。

本文引用格式

赵继广 , 闫梁 . 基于过载对虚拟路径变上限积分的变节点IDVD算法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2013.0360

Abstract

To solve the problem of low utilization rate in IDVD(Inverse Dynamics in the Virtual Domain)trajectory optimization caused by the nodes distribution in equal distance, a variable node IDVD trajectory optimization real time algorithm is presented in this paper. The algorithm based on variable upper limit integral of overload on the virtual arc transcribes fixed node and fixed step IDVD to variable node and variable step IDVD by optimizing twice. Compared with two examples using IDVD in the interception of BM trajectory at ascend phase, if the number of nodes is equal, variable node IDVD reaches lower standard deviations of error of 20% at x axis, y axis, z axis approximately, and cuts the optimization time by 20% approximately. Results show that the variable node IDVD is able to distribute nodes adaptively according to the size of curvature of virtual arc, which improves utilization rate of nodes, increases trajectory calculation accuracy and decreases online optimization time.

参考文献

[1] Ocampo C A, Mathur R. Variational Model for Optimization of Finite-Burn Escape Trajectories Using a Direct Method[J]. Journal of Guidance, Control, and Dynamics. 2012, 35(2): 598-608.
[2] Liu T, Nachtsheim P R. SHOOTING METHOD FOR SOLUTION OF BOUNDARY-LAYER FLOWS WITH MASSIVE BLOWING.[J]. AIAA Journal. 1973, 11(11): 1584-1586.
[3] Matausek M R. DIRECT SHOOTING METHOD, LINEARIZATION, AND NONLINEAR ALGEBRAIC EQUATIONS.[J]. Journal of Optimization Theory and Applications. 1974, 14(2): 199-212.
[4] Blank D, Shinar J. DIRECT SHOOTING ALGORITHM AND THE APPLICATION OF PARAMETRIC OPTIMIZATION FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS.[J]. 1978(311).
[5] Lenz S M, Bock H G, Schl?der J P, et al. Multiple Shooting Method for Initial Satellite Orbit Determination[J]. Journal of Guidance, Control, and Dynamics. 2010, 33(5): 1334-1346.
[6] Maurer H, Gillessen W. APPLICATION OF MULTIPLE SHOOTING TO THE NUMERICAL SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH BOUNDED STATE VARIABLES.[J]. Computing (Vienna/New York). 1975, 15(2): 105-126.
[7] Rentrop P. NUMERICAL SOLUTION OF THE SINGULAR GINZBURG-LANDAU EQUATIONS BY MULTIPLE SHOOTING.[J]. Computing (Vienna/New York). 1976, 16(1-2): 61-67.
[8] Subbarao K, Shippey B M. Hybrid Genetic Algorithm Collocation Method for Trajectory Optimization[J]. Journal of Guidance, Control, and Dynamics. 2009, 32(4): 1396-1403.
[9] Benson D A, Huntington G T, Thorvaldsen T P, et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method[J]. Journal of Guidance, Control, and Dynamics. 2006, 29(6): 1435-1440.
[10] Renes J J. ON THE USE OF SPLINES AND COLLOCATION IN A TRAJECTORY OPTIMIZATION ALGORITHM BASED ON MATHEMATICAL PROGRAMMING.[J]. 1978.
[11] Seywald H. Trajectory optimization based on differential inclusion (Revised)[J]. Journal of Guidance, Control, and Dynamics. 1994, 17(3): 480-487.
[12] Fahroo F, Ross I M. Second Look at Approximating Differential Inclusions[J]. Journal of Guidance, Control, and Dynamics. 2001, 24(1): 131-133.
[13] Ping L. Inverse dynamics approach to trajectory optimization for an aerospace plane[J]. Journal of Guidance, Control, and Dynamics. 1993, 16(4): 726-732.
[14] von Stryk O, Bulirsch R. Direct and indirect methods for trajectory optimization[J]. Annals of Operations Research. 1992, 37(1-4): 357-373.
[15] Basset G, Xu Y, Yakimenko O A. Computing Short-Time Aircraft Maneuvers Using Direct Methods[J]. Journal of Computer and Systems Sciences International. 2010, 49(3): 481-513.
[16] Yakimenko O A. Direct method for rapid prototyping of near-optimal aircraft trajectories[J]. Journal of Guidance, Control, and Dynamics. 2000, 23(5): 865-875.
[17] Benson D A, Huntington G T, Thorvaldsen T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics. 2006, 29(6): 1435-1440.
[18] Fahroo F, Ross I M. Costate estimation by a Legendre pseudospectral method[J]. Journal of Guidance, Control, and Dynamics. 2001, 24(2): 270-277.
[19] Fahroo F, Ross I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics. 2002, 25(1): 160-166.
[20] Ross I M, Fahroo F. Pseudospectral knotting methods for solving optimal control problems[J]. Journal of Guidance, Control, and Dynamics. 2004, 27(3): 397-405.
[21] Boyarko G A, Romano M, Yakimenko O A. Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method[J]. Journal of Guidance, Control, and Dynamics. 2011, 34(4): 1197-1208.
[22] Yakimenko O A. Shortcut-time spatial trajectories on-board optimization and their cognitive head-up display visualization for pilot's control actions during manoeuvring support[C]. New York, NY, USA: IEEE, 1997.
[23] Lukacs J A I, Yakimenko O A. Trajectory-shaping guidance for interception of ballistic missiles during the boost phase[J]. Journal of Guidance, Control, and Dynamics. 2008, 31(5): 1524-1531.
[24] Paris S W, Riehl J P, Sjauw W K. Enhanced procedures for direct trajectory optimization using nonlinear programming and implicit integration[C]. Keystone, CO, United states: American Institute of Aeronautics and Astronautics Inc., 2006.
文章导航

/