加热表面水珠运动特性研究
收稿日期: 2013-07-29
修回日期: 2013-08-27
网络出版日期: 2013-08-30
Study of Water Drop Motion Characteristics on Heating Surface
Received date: 2013-07-29
Revised date: 2013-08-27
Online published: 2013-08-30
为研究加热表面的水珠运动特性,提出了加热表面水珠的几何参数、受力及其运动过程的计算方法。试验获得了水珠的表面阻滞力、黏性阻力和气动力计算关系式中的相关系数,给出了不同风速条件下水珠运动的临界直径,进行了加热表面水珠运动试验并对其过程进行了数值计算。试验结果表明:水珠的无量纲表面阻滞力保持恒定,运动时受到的黏性阻力与其运动速度和宽度有关,在外流场作用下所受的气动力可采用修正圆球阻力公式进行计算。将试验获得的相关系数加入水珠运动模型中,对加热表面水珠运动过程进行数值计算,计算结果与试验结果吻合,说明本文所述方法能够准确地模拟加热表面水珠大小和位置随时间的变化。
孟繁鑫 , 朱光亚 , 李荣嘉 , 张大林 . 加热表面水珠运动特性研究[J]. 航空学报, 2014 , 35(5) : 1292 -1301 . DOI: 10.7527/S1000-6893.2013.0376
To study the water drop motion characteristics on heating surface, a method is proposed to calculate the geometric parameters, force and motion process of water drop on the heating surface. Experiments are conducted to calibrate the correlation coefficients used in the calculation of surface retention force, the viscous drag and the aerodynamic force. The critical diameter of drop movement is given for different wind speeds. Water drop movement on heating surface is investigated by experimental and computational approaches. The results show that the dimensionless surface retention force keeps constant and the viscous drag is related to the drop velocity and width. The aerodynamic force under the action of outside airflow can be calculated by the correction of sphere drag formula. By applying correlation coefficient obtained in the experiment to the numerical model, water drop movement on heating surface can be predicted. The computation results fit well with the test results. It is concluded that the present method can simulate the time history of water drop size and location on the heating surface accurately.
[1] Messinger B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
[2] Miller D R, Lynch C J, Tate P A. Overview of high speed close-up imaging in an icing environment, AIAA-2004-0407. Reston: AIAA, 2004.
[3] Olsen W, Walker E. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces, NASA-TM-87184. Washington, D.C.: NASA, 1986.
[4] Meng F X, Chen W J, Liang Q S, et al. Experiment on cylinder in injection driven icing wind tunnel[J]. Journal of Aerospace Power, 2013, 28(7): 1467-1474.(in Chinese) 孟繁鑫, 陈维建, 梁青森, 等. 引射式结冰风洞内圆柱结冰试验[J]. 航空动力学报, 2013, 28(7): 1467-1474.
[5] Thiele U, Neuffer K, Bestehorn M, et al. Sliding drops on an inclined plane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1): 87-104.
[6] Rio E, Daerr A, Andreotti B, et al. Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane[J]. Physical Review Letters, 2005, 94(2): 024503.
[7] Servantie J, Müller M. Statics and dynamics of a cylindrical droplet under an external body force[J]. The Journal of Chemical Physics, 2008, 128(1): 014709.
[8] Fortin G. Simulation de l'accrétion de glace sur un obstacle bidimensionnel par la méthode des bissectrices et par la modélisation des ruisselets et des gouttes de surface. Quebec: Universite du Quebeca Chicoutimi, 2003.(in French)
[9] ElSherbini A, Jacobi A. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces[J]. Journal of Colloid and Interface Science, 2006, 299(2): 841-849.
[10] Extrand C W, Kumagai Y. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force[J]. Journal of Colloid and Interface Science, 1995, 170(2): 515-521.
[11] Extrand C, Gent A. Retention of liquid drops by solid surfaces[J]. Journal of Colloid and Interface Science, 1990, 138(2): 431-442.
[12] Brown R, Orr F, Jr, Scriven L. Static drop on an inclined plate: analysis by the finite element method[J]. Journal of Colloid and Interface Science, 1980, 73(1): 76-87.
[13] Dussan V E, Chow R T P. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids[J]. Journal of Fluid Mechanics, 1983, 137(1): 1-29.
[14] Wolfram E, Faust R, Padday J. Wetting, spreading and adhesion[M]. New York: Academic Press, 1978: 213.
[15] Kim H Y, Lee H J, Kang B H. Sliding of liquid drops down an inclined solid surface[J]. Journal of Colloid and Interface Science, 2002, 247(2): 372-380.
[16] Elizabeth B, Dussan V, Davis S. On the motion of a fluid-fluid interface along a solid surface[J]. Journal of Fluid Mechanics, 1974, 65(1): 71-95.
[17] Hao L, Cheng P. An analytical model for micro-droplet steady movement on the hydrophobic wall of a micro-channel[J]. International Journal of Heat and Mass Transfer, 2010, 53(5): 1243-1246.
[18] Richard D, Quéré D. Viscous drops rolling on a tilted non-wettable solid[J]. Europhysics Letters, 1999, 48(3): 286-291.
[19] Ding H, Gilani M N, Spelt P D. Sliding, pinch-off and detachment of a droplet on a wall in shear flow[J]. Journal of Fluid Mechanics, 2010, 644: 217-244.
[20] Fortin G, Ilinca A, Laforte J L, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling, AIAA-2003-1076. Reston: AIAA, 2003.
[21] Fox H, Zisman W. The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene[J]. Journal of Colloid Science, 1950, 5(6): 514-531.
[22] Kays W M, Crawford M E, Weigand B. Convective heat and mass transfer[M]. New York: McGraw-Hill, 2004: 367.
/
〈 | 〉 |