航空发动机部件性能退化参数的分布式估计算法
收稿日期: 2013-02-19
修回日期: 2013-08-06
网络出版日期: 2013-08-30
基金资助
某“十二五”预研项目
Distributed Estimation Algorithm for Aero-engine Deviation Parameters
Received date: 2013-02-19
Revised date: 2013-08-06
Online published: 2013-08-30
航空发动机部件性能退化参数(EDPs)估计是发动机性能寻优控制(PSC)的关键技术之一。针对应用传统的集中式Kalman滤波算法估计EDPs存在计算效率不高、容错性差等不足,提出了采用分布式滤波的思想估计性能退化参数。以集中式Kalman滤波算法估计EDPs的状态变量模型(SVM)和递推算法为基础,引入信息融合,设计了一种结构简洁的联邦滤波器。根据联邦滤波器的结构和递推公式,从理论上分析了这类分布式估计算法的优势。最后以某型涡扇发动机为例,对联邦滤波器的估计能力进行了仿真验证,应用设计的联邦滤波器估计EDPs,并与集中式Kalman滤波算法的估计结果进行比较。仿真结果表明,分布式计算模式的联邦滤波算法能迅速收敛,且估计精度明显高于集中式Kalman滤波算法。本文所做的研究对发动机PSC的发展具有一定的理论意义和工程应用价值。
尹大伟 , 吕日毅 , 常斌 , 颜仙荣 . 航空发动机部件性能退化参数的分布式估计算法[J]. 航空学报, 2013 , 34(12) : 2716 -2724 . DOI: 10.7527/S1000-6893.2013.0356
Aero-engine deviation parameters (EDPs) estimation is one of the key technologies of performance seeking control (PSC). The idea of using distributed filtering to estimate EDPs is proposed, because there are some disadvantages in the traditional centralized Kalman filtering,such as low computational efficiency, poor fault-tolerance, etc. A simple federated filtering with information fusion is designed to estimate the EDPs, which is based on the traditional state variable model and Kalman filtering algorithm. The advantages of the designed federated filtering are analyzed in theory in terms of the construction and recurrence equations. Finally, the capability of federated filtering is certified using a given turbo fan engine by simulation. The EDPs are estimated by applying the designed federated filtering, and the estimation results are compared with those of traditional Kalman filtering's, which show that federated filtering with distributed calculation can realize convergencde more quickly, and the estimation precision is evidently higher. This study may have some theoretical significance and practical value for the development of PSC.
[1] Ralph J A, Bansal I, Bough R M. Advanced control for airbreathing engines. NASA CA 189203-189205, 1993.
[2] Zhu X J. Development of advanced aero-engine control concept and high stability engine control system. Gas Turbin Experiment and Research, 2002, 15(3): 5-10. (in Chinese) 朱旭津. 航空发动机先进控制概念和高稳定性发动机控制系统研制. 燃气涡轮试验与研究, 2002, 15(3): 5-10.
[3] Litt J S, Simon D L, Garg S. A survey of intelligent control and health management technologies for aircraft propulsion system. Journal of Aerospace Computing, Information, and Communicaton, 2004, 1(1-2): 543-563.
[4] Orme J S, Conners T R. Supersonic flight test results of a performance seeking control algorithm on a NASA-15 spacecraft. AIAA-1994-3210, 1994.
[5] Gilyard G B, Orme J S. Performance-seeking control-program overview and future directions. AIAA-1993-3765-CP, 1993.
[6] Simon D L, Garg S. A systematic approach for model-based aircraft engine performance estimation. AIAA-2009-1872, 2009.
[7] Gilyard G B, Orme J S. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane. AIAA-1992-3743, 1992.
[8] Wu D. Research on aeronautical propulsion nonlinear performance seeking control. Xi'an: School of Power and Energy, Northwestern Polytechnical University, 2004. (in Chinese) 吴丹. 航空推进系统非线性性能寻优控制研究. 西安: 西北工业大学动力与能源学院, 2004.
[9] Sun F C. Research on aero-engine performance seeking control. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) 孙丰诚. 航空发动机性能寻优控制技术研究. 南京: 南京航空航天大学能源与动力学院, 2009.
[10] Zhu Y B, Fan S Q, Li H C, et al. A hybrid optimization based on linear programming and model-assisted pattern search method in PSC. AIAA-2006-1435, 2006.
[11] Yuan C F, Yao H, Yang G. On-board real-time adaptive model of aero-engine. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 561-564. (in Chinese) 袁春飞, 姚华, 杨刚. 航空发动机机载实时自适应模型研究. 航空学报, 2006, 27(4): 561-564.
[12] Ferguson P A. Distributed estimation and control technologies for formation flying spacecraft. Massachusetts: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2003.
[13] Fu M Y, Deng Z L, Yan L P. Kalman filteringing with application in navigation systems. Beijing: Science Press, 2010. (in Chinese) 付梦印, 邓志红, 闫莉萍. Kalman滤波理论及其在导航系统中的应用. 北京: 科学出版社, 2010.
[14] Pakmehr M, Fitzgerald N, Kiwada G, et al. Distributed modeling and control of turbofan systems. AIAA-2009-6271, 2009.
[15] Yedavalli R K, Belapurkar R, Behbahani A. Stability analysis of distributed engine control systems under communication packet drop. AIAA-2008-4580, 2008.
[16] Wang F. Research on aeroengine performance seeking control. Xi'an: School of Power and Energy, Northwestern Polytechnical University, 2005. (in Chinese) 王芳. 航空发动机性能寻优控制研究. 西安: 西北工业大学动力与能源学院, 2005.
[17] OuYang Z. Research on aero-engine component perfermance tracking filtering. Xi'an: School of Power and Energy, Northwestern Polytechnical University, 2004. (in Chinese) 欧阳舟. 航空发动机部件性能跟踪滤波器研究. 西安: 西北工业大学动力与能源学院, 2004.
[18] Yang Y X. Adaptive navigation and kinematic positioning. Beijing: Surveying and Mapping Press, 2006: 281-285. (in Chinese) 杨元喜. 自适应动态导航定位. 北京: 测绘出版社, 2006: 281-285.
[19] Simon D L. An overview of the NASA aviation safety program propulsion health monitoring element. AIAA-2000-3624, 2000.
[20] Behbahani A, Adibhatla S, Rauche C. Integrated model-based controls and PHM for improving turbine engine performance, reliability, and cost. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009.
[21] Kumar A, Viassolo D. Model-based fault tolerant control. NASA CR-2008-215273, 2008.
[22] Ferguson P, How J. Decentralized estimation algorithms for formation flying spacecraft. AIAA-2003-5442, 2003.
/
〈 | 〉 |