基于多元极值Copula的尾流飞行风险概率评估
收稿日期: 2013-05-28
修回日期: 2013-08-19
网络出版日期: 2013-08-26
基金资助
国家自然科学基金(61374145,U1333131)
Flight Risk Probability Evaluation in Wakes Based on Multivariate Extremum Copula
Received date: 2013-05-28
Revised date: 2013-08-19
Online published: 2013-08-26
Supported by
National Natural Science Foundation of China (61374145, U1333131)
在尾流问题日益突出的背景之下,结合人-机-环复杂系统建模与多元极值理论,评估遭遇近距近地尾流情形下的飞行风险概率。基于蒙特卡罗法提取尾流极值参数,验证了一维极值参数符合广义极值(GEV)分布;在此基础上提出了二维极值参数的双参数变权重(DPAVW) Copula模型,利用自适应区间粒子群优化(ARPSO)算法对目标函数中的未知参数进行了辨识,拟合优度检验的结果表明DPAVW Copula模型具有比其他Copula模型更高的精度;在利用Copula模型对尾流三维空间中所有二维极值参数进行描述的基础上,求出了每个网格节点上对应的飞行风险概率值,构建了尾流场内二维及三维可视化风险概率图。所提方法是对飞机系统安全性评估理论与方法的有效补充,对于尾流场内的导航控制与风险规避、机场起降的尾流安全间隔改进、环境风险可视化等研究方向有一定的参考价值;同时也适用于不同状况下飞行风险概率的横向对比分析。
薛源 , 徐浩军 , 朱和铨 , 圣娟娟 . 基于多元极值Copula的尾流飞行风险概率评估[J]. 航空学报, 2014 , 35(3) : 714 -726 . DOI: 10.7527/S1000-6893.2013.0361
Under the background of increasing wake vortex problems, risk probabilities in the situation of near-ground wake encounter are evaluated using complex human-machine-environment theory and multivariate extreme value theory. First, we extract extreme parameters through flight simulation based on Monte Carlo method, and verify the one-dimensional extreme parameters meet generalized extreme value (GEV) distribution; Second, we propose the double parameter & adaptive variable weight (DPAVW) Copula model for two-dimensional extreme parameters, then use ARPSO (Adaptive Range Particle Swarm Optimization) algorithm to identify unknown parameters of the one-dimensional and two-dimensional objective function, and the results of fitting test show DPAVW Copula model has higher accuracy than the other Copula models; Third, flight risk probability in each corresponding grid node is evaluated on the basis of using Copula model to describe all the extreme values in three-dimensional wake space, and then 2D and 3D visual maps of risk probability are built. The proposed methods are effective complements to the aircraft system safety assessment theory, and they have a certain reference value for research directions such as wake navigation control, wake risk aversion, airport safety interval improvement and environmental risks visualization. Moreover, they are also suitable for comparative analysis of flight risk probabilities under different circumstances.
[1] Holzäpfel F. Probabilistic two-phase aircraft wake-vortex model: further development and assessment[J]. Journal of Aircraft, 2006, 43(3): 700-708.
[2] Holzäpfel F, Kladetzke J. Assessment of wake-vortex encounter probabilities for crosswind departure scenarios[J]. Journal of Aircraft, 2011, 48(3): 812-822.
[3] Jurkovich M S. CFD prediction of the flow field behind the KC-135R tanker, AIAA-2011-3510[R]. Reston: AIAA, 2011.
[4] Rossow V J, Hardy G H, Meyn L A. Models of wake-vortex spreading mechanisms and their estimated uncertainties, AIAA-2005-7353[R]. Reston: AIAA, 2005.
[5] Gerz T, Holzäpfel F, Darracq D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208.
[6] Rossow V J. Lift-generated vortex wakes of subsonic transport aircraft[J]. Progress in Aerospace Sciences, 1999, 35(6): 507-660.
[7] Dogan A, Kim E, Blake W. Control and simulation of relative motion for aerial refueling in racetrack maneuvers[J]. Journal of Guidance, Control and Dynamics, 2007, 30(5): 1551-1557.
[8] Hahn K U, Fischenberg D, Niedermeier D, et al. Wake encounter flight control assistance based on forward-looking measurement processing, AIAA-2010-7680[R]. Reston: AIAA, 2010.
[9] Rossow V J, James K D. Overview of wake-vortex hazards during cruise[J]. Journal of Aircraft, 2000, 37(6): 960-975.
[10] Jones S M, Reveley M. An overview of the NASA aviation safety program assessment progress, AIAA-2003-6706[R]. Reston: AIAA, 2003.
[11] Luckner R, Hohne G F M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687.
[12] Visscher D, Winckelmansy G, Lonfils T, et al. The WAKE4D simulation platform for predicting aircraft wake vortex transport and decay: description and examples of application, AIAA-2010-7994[R]. Reston: AIAA, 2010.
[13] Zhou B. Study on the microstructure and scattering characteristics of aircraft wake vortices[D]. Changsha: National University of Defense Technology, 2009. (in Chinese) 周彬. 飞机尾流的微结构特征及散射特性研究[D]. 长沙: 国防科学技术大学, 2009.
[14] Zhou B, Wang X S, Wang T, et al. Influence of crosswind speeds on aircraft wake vortex movement[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 773-778. (in Chinese) 周彬, 王雪松, 王涛, 等. 侧向风速对飞机尾流运动的影响[J]. 航空学报, 2009, 30(5): 773-778.
[15] Li D W, Wang H L. Wake vortex effect modeling and simulation in automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 776-780. (in Chinese) 李大伟, 王宏伦. 自动空中加油阶段加油机尾涡流场建模与仿真[J]. 北京航空航天大学学报, 2010, 36(7): 776-780.
[16] Society of Automotive Engineers. ARP 4761 Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment[S]. 1996.
[17] Society of Automotive Engineers. ARP 4754 Certification considerations for high-integrated or complex aircraft systems[S]. 1996.
[18] USA Department of Defense. MIL-HDBK-516B Airworthiness certification criteria[S]. 2005.
[19] USA Department of Defense. MIL-STD-882D Standard practice for system safety[S]. 2000.
[20] Commission of Science, Technology and Industry for National Defense. GJB900—90 General program for system safety[S]. 1990. (in Chinese) 国防科学技术工业委员会. GJB900—90系统安全性通用大纲[S]. 1990.
[21] Liu D F, Wen S Q, Wang L P. Poison-gumble mixed compound distribution and its application[J]. Chinese Science Bulletin, 2002, 47(22): 1901-1906.
[22] Ho L C, Burridge P, Caddle J, et al. Value-at-risk: applying the extreme value approach to Asian markets in the recent financial turmoil[J]. Pacific-Basin Finance Journal, 2000(8): 249-275.
[23] Wu Z K, Zhao L, Ge Y J. Statistical analysis of wind velocity and rainfall intensity joint probability distribution of Shanghai area in typhoon condition[J]. Acta Aerodynamica Sinica, 2010, 28(4): 393-399. (in Chinese) 武占科, 赵林, 葛耀君. 上海地区台风条件风速和雨强联合概率分布统计[J]. 空气动力学学报, 2010, 28(4): 393-399.
[24] Stuart C. An introduction to statistical modeling of extreme value[M]. London: Springer, 2007: 35-48.
[25] Nelsen R B. An introduction to Copulas[M]. 2nd ed. New York: Springer, 2006: 45-55.
[26] Joe H. Asymptotic efficiency of the two-stage estimation method for Copula-based models[J]. Journal of Multivariate Analysis, 2005, 94(2): 401-419.
[27] Wang L F. The research on estimation of distribution algorithm based on Copula theory[D]. Lanzhou: School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, 2011. (in Chinese) 王丽芳. 基于Copula理论的分布估计算法研究[D]. 兰州: 兰州理工大学电气工程与信息工程学院, 2011.
[28] Zhao L Q. The study of financial risk measurement based on Copula function[D]. Xiamen: Xiamen University, 2009. (in Chinese) 赵丽琴. 基于Copula函数的金融风险度量研究[D]. 厦门: 厦门大学, 2009.
[29] Parsopoulos K E,Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing, 2002, 1(1): 235-306.
/
〈 | 〉 |