电子与控制

带有落角约束的一般加权最优制导律

  • 张友安 ,
  • 黄诘 ,
  • 孙阳平
展开
  • 1. 海军航空工程学院 控制工程系, 山东 烟台 264001;
    2. 海军航空工程学院 青岛校区, 山东 青岛 266041
张友安 男,博士,教授。主要研究方向:先进控制技术及其在飞行器导航、制导与控制中的应用。Tel:0535-6635071 E-mail:zhangya63@sina.com

收稿日期: 2013-06-24

  修回日期: 2013-08-15

  网络出版日期: 2013-08-22

基金资助

国家自然科学基金(61273058)

Generalized Weighted Optimal Guidance Laws with Impact Angle Constraints

  • ZHANG Youan ,
  • HUANG Jie ,
  • SUN Yangping
Expand
  • 1. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Qingdao Branch, Naval Aeronautical and Astronautical University, Qingdao 266041, China

Received date: 2013-06-24

  Revised date: 2013-08-15

  Online published: 2013-08-22

Supported by

National Natural Science Foundation of China (61273058)

摘要

以期望的落角方向为坐标轴定义了落角坐标系,在落角坐标系中建立了线性化的运动关系方程。应用Schwarz不等式,分别研究了控制系统为一阶惯性环节和无惯性环节情况下带落角约束的任意加权最优制导律,得到了制导律的一般表达式。对于无惯性环节控制系统以及加权函数为一般初等函数类型的一阶惯性环节控制系统,当加权函数的逆的一次到三次积分都能求出解析表达式时,均可以得到解析形式的最优制导律。对于不同的制导目的,应用本文结果可以方便地设计相应的制导律。对于某些特定的加权函数,所得制导律推广了现有文献的结论,并给出了指数权函数下满足落角约束的最优制导律的仿真结果。

本文引用格式

张友安 , 黄诘 , 孙阳平 . 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014 , 35(3) : 848 -856 . DOI: 10.7527/S1000-6893.2013.0364

Abstract

The impact angle frame is defined which axis is in the direction of the desired impact angle, and the engagement kinematics is established in the impact angle frame. Generalized weighted optimal guidance laws with impact angle constraints are studied for first-order lag control systems and lag-free control systems respectively using Schwarz's inequality approach. For lag-free control systems and first-order lag control systems with elementary function weighting, the analytical forms of weighted optimal guidance laws can be obtained if the integrations of the inverse of the weighting functions up to triple can be analytically given. The results can be applied to guidance law designs for accomplishing different guidance objectives. For some specific weighted functions, the proposed guidance law has extended the results in references. Simulation results are given for the exponential weighting optimal guidance law with impact angle constraints.

参考文献

[1] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

[2] Ratnoo A, Ghose, D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.

[3] Hu X, Huang X M. Three-dimensional circular guidance law with impact angle constraints [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 508-519. (in Chinese) 胡锡精, 黄雪梅. 具有碰撞角约束的三维圆轨迹制导律[J]. 航空学报, 2012, 33(3): 508-519.

[4] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle/acceleration constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

[5] Sun S, Zhang H M, Zhou D. Sliding mode guidance law with autopilot lag for terminal angle constrained trajectories[J]. Journal of Astronautics, 2013, 34(1): 69-78. (in Chinese) 孙胜, 张华明, 周荻. 考虑自动驾驶仪动态特性的终端角度约束滑模导引律[J].宇航学报, 2013, 34(1): 69-78.

[6] Zhang Y A, Ma P B. Three-dimensional guidance laws with impact angle and impact time constraints[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1020-1026. (in Chinese) 张友安, 马培蓓. 带有攻击角度和攻击时间控制的三维制导[J]. 航空学报, 2008, 29(4): 1020-1026.

[7] Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.

[8] Cho H, Ryoo C K, Tahk M J. Implementation of optimal guidance laws using predicted velocity profiles[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(4): 579-588.

[9] Bryson A E, Jr, Ho Y C. Applied optimal control: optimization, estimation and control[M]. Revised ed. New York: Taylor & Francis, 1975: 1-41.

[10] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.

[11] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.

[12] Ohlmeyer E J, Philips C A. Generalized vector explicit guidance[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 261-268.

[13] Jeon I S, Lee J I. Optimality of proportional navigation based on nonlinear formulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2051-2055.

[14] Rusnal I. Exponential criterion-based guidance law for acceleration constrained missile and maneuvering target[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 718-721.

[15] Ben-Asher J Z, Farber N, Levinson S. New proportional navigation law for ground-to-air system[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 822-825.

[16] Zarchan P. Tactical and strategic missile guidance [M]. 5th ed. Reston: AIAA, 2007: 541-547.

文章导航

/