基于闭环控制的带翼导弹虚拟飞行数值模拟
收稿日期: 2013-04-18
修回日期: 2013-07-22
网络出版日期: 2013-08-20
基金资助
国家“973”计划(2009CB724104)
Virtual Flight Numerical Simulation of the Basic Finner Projectile with Closed Loop
Received date: 2013-04-18
Revised date: 2013-07-22
Online published: 2013-08-20
Supported by
National Basic Research Program of China (2009CB724104)
通过耦合求解非定常Navier-Stokes方程、刚体六自由度(6DOF)运动方程及舵偏控制律,发展了一套虚拟飞行数值模拟平台,对基本带翼导弹外形进行了虚拟飞行数值模拟研究。流场求解采用基于结构网格的有限体积法,时间推进采用双时间步法,使用刚性重叠动网格技术模拟舵与弹身的相对运动,采用四阶Runger-Kutta方法求解运动方程组,舵偏控制律采用基于比例-积分-微分(PID)的反馈控制。模拟结果表明:发展的虚拟飞行数值模拟平台能够处理包含复杂运动边界的非定常运动问题,可以为非定常气动力建模提供数据、预示飞行器稳定性及检验飞行控制律,该模拟平台具备一定的工程应用价值。
席柯 , 袁武 , 阎超 , 黄宇 . 基于闭环控制的带翼导弹虚拟飞行数值模拟[J]. 航空学报, 2014 , 35(3) : 634 -642 . DOI: 10.7527/S1000-6893.2013.0348
Through the solution by coupling of the unsteady Navier-Stokes equations, the rigid-body six degree-of-freedom (6DOF) motion equations and the rudder deflection control law, a set of platforms is developed and the virtual flight simulation of a basic finner projectile is investigated. The flow solver is a finite-volume solver based on a structure grid with dual time stepping, the chimera method is used to simulate relative motions, the fourth-order Runger-Kutta method is used to solve the motion equations, and the rudder control law using feedback control is based on proportional integral and differential (PID). Simulation results show that the virtual flight simulation platform is capable of solving the complicated unsteady flows with moving boundaries, andproviding data for unsteady aerodynamic modeling, which indicates the stability of the aircraft and test flight control law, and promises a strong prospect for engineering application.
[1] Li Z F. Special wind tunnel testing technology[M]. Beijing: Aviation Industry Press, 2010: 562-563.(in Chinese) 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 562-563.
[2] Murayama M, Togashi F, Nakahashi K. Simulation of aircraft response to control surface deflection using unstructured dynamic grids, AIAA-2002-2940[R]. Reston: AIAA, 2002.
[3] Schütte A, Einarsson G, Raichle A, et al. Prediction of the unsteady behavior of maneuvering aircraft by CFD aerodynamic,flight-mechanic and aeroelastic coupling, NATO RTO-MP-AVT-123-P-11[R]. Neuilly sur Seine, France: NATO Research and Technology Organization, 2005.
[4] Boelens O J, Prananta B B, Soemrwoto B I. Towards an aero-servo-elastic simulation capability for high-performance fighter aircraft, NATO RTO-MP-AVT-123-P-30[R]. Neuilly sur Seine, France: NATO Research and Technology Organization, 2005.
[5] Schütte A, Einarsson G. Numerical simulation of maneuvering aircraft by aerodynamic flight-mechanic and structural mechanics coupling[J]. Journal of Aircraft, 2009, 46(1): 53-64.
[6] McDaniel D R, Sears D R, Tuckey T R, et al. Aerodynamic control surface implementation in Kestrel v2.0, AIAA-2011-1175[R]. Reston: AIAA, 2011.
[7] Morton S A, Eymann T A, Lamberson S, et al. Relative motion simulations using an overset multimesh paradigm with Kestrel v3, AIAA-2012-0712[R]. Reston: AIAA, 2012.
[8] Green B E. Analysis of the stability and control characteristics of the F/A-18E super hornet using the Kestrel CFD flower solver, AIAA-2012-0715[R]. Reston: AIAA, 2012.
[9] Cummings R M, Schütte A. An integrated computational/experimental approach to UCAV stability and control estimation: overview of NATO RTO AVT-161, AIAA-2010-4392[R]. Reston: AIAA, 2010.
[10] Tao Y, Fan Z L, Wu J F. CFD based virtual flight simulation of square cross-section missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 169-176. (in Chinese) 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2): 169-176.
[11] Da X Y, Tao Y, Zhao Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 977-983.(in Chinese) 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6): 977-983.
[12] Li X L, Yang Y. Numerical simulation of the free rolling motion of a delta wing configuration with aileron deflection[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 453-462.(in Chinese) 李喜乐, 杨永. 带副翼偏转的三角翼自由滚转运动数值模拟[J]. 航空学报, 2012, 33(3): 453-462.
[13] Tao Y, Da X Y, Zhao Z L. CFD based simulation of longitudinal flight linear displacement response of virtual flight testing in wind tunnel[C]//System Simulation Technology & Application(Volume 13).Hefei: Press of University of Science and Technology of China, 2011: 61-65.(in Chinese) 陶洋, 达兴亚, 赵忠良. 风洞虚拟飞行纵向线位移约束影响效应CFD仿真研究[C]//第13届中国系统仿真技术及其应用学术年会论文集.合肥: 中国科学技术大学出版社, 2011: 61-65.
[14] Yan C. The methodology and application of computational fluid dynamics[M]. Beijing: Beihang University Press, 2006: 18-25.(in Chinese) 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006: 18-25.
[15] Li Y J. Numerical simulation of unsteady flows around aircrafts experiencing forced motion and free flight[D]. Beijing: School of Aeronautic Science and Engineering, Beihang University, 2007. (in Chinese) 李跃军. 飞行器强迫运动和自由飞的非定常流动数值模拟[D]. 北京:北京航空航天大学航空科学与工程学院, 2007.
[16] Yuan W, Yan C, Yu J, et al. Cell-center ADT algorithm based on ghost cell[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1375-1379.(in Chinese) 袁武, 阎超, 于剑, 等. 基于虚网格的格心ADT搜索法[J]. 北京航空航天大学学报, 2012, 38(10): 1375-1379.
[17] Yuan W, Yan C, Xi K. Investigation and enhancement of hole mapping method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4): 563-568. (in Chinese) 袁武, 阎超, 席柯. 洞映射方法的研究和改进[J]. 北京航空航天大学学报, 2012, 38(4): 563-568.
[18] Xi K, Ma L J, Yan C, et al. Numerical simulation of three-store ripple release using overset structured grid[J]. Physics of Gases, 2012, 7(4): 75-79.(in Chinese) 席柯, 马林静, 阎超, 等. 外挂物连续投放数值模拟[J]. 气体物理, 2012, 7(4): 75-79.
[19] Allan M R, Badcock K J, Richards B E. CFD based simulation of longitudinal flight mechanics with control, AIAA-2005-0046[R]. Reston: AIAA, 2005.
[20] Dupuis A D, Hathaway W. Aeroballistic range tests of the basic finner reference projectile at supersonic velocities[C]//DREV-TM-9703, Defense Research Establishment, 1997.
[21] Bhagwandin V A, Sahu J. Numerical prediction of pitch damping stability derivatives for finned projectiles, AIAA-2011-3028[R]. Reston: AIAA, 2011.
/
〈 | 〉 |