飞翼结构构型气动弹性优化设计方法
收稿日期: 2013-03-20
修回日期: 2013-07-25
网络出版日期: 2013-08-09
基金资助
国家自然科学基金(91116005,10902006)
An Aeroelastic Optimization Design Approach for Structural Configuration of Flying Wings
Received date: 2013-03-20
Revised date: 2013-07-25
Online published: 2013-08-09
Supported by
National Natural Science Foundation of China (91116005,10902006)
针对飞翼布局的早期构型设计,基于遗传算法提出一种气动弹性综合优化设计方法。采用等效板多板模型计算翼面结构动力学特性,利用面元法计算气动力。在考虑颤振速度、静气动弹性变形约束的情况下,以飞翼结构质量最小为目标开展优化设计。结果表明,形状参数优化设计对于飞翼的减重更为直接。当涉及构型尺寸参数设计时,同时进行两种参数的综合优化可以得到较轻的机翼结构,但计算成本较大。采用先进行构型优化,再进行尺寸优化的分级优化方法能快速获得最优的参数组合和满意的减重效果。为飞翼式飞行器的结构总体设计提供了一种快速有效的气动弹性综合优化设计方法。
杨佑绪 , 吴志刚 , 杨超 . 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013 , 34(12) : 2748 -2756 . DOI: 10.7527/S1000-6893.2013.0353
An integrated aeroelastic optimization design approach based on the genetic algorithm is developed for the preliminary configuration design of a flying wing. An equivalent multi-plate model is adopted to resolve the structural dynamics characteristics. A panel approach is used to compute the aerodynamic force. A simple parameterization method is used to describe the wing geometry. The approach is applied to a flying wing and the objective is to minimize the structural mass subject to the static aeroelastic deformation and critical flutter speed constraints. It is found that the configuration parameter is more important for reducing the structure mass and a multilevel optimization is advised when the configuration and sizing variables are considered. The method provides a useful tool for the preliminary configuration design of a flying wing.
[1] Begin L. The northrop flying wing prototypes. AIAA-1983-1047, 1983.
[2] Bolsunovsky A L, Buzoverya N P, Gurevich B I, et al. Flying wing-problems and decisions. Aircraft Design, 2001, 4(4): 193-219.
[3] Dmitriev V G, Shkadov L M, Denisov V E, et al. The flying-wing concept-changes and risks. AIAA-2003-2887, 2003.
[4] Roman D, Allen J B, Liebeck R H. Aerodynamic design challenges of the blended-wing-body subsonic transport. AIAA-2000-4335, 2000.
[5] Liebeck R H. Design of the blended wing body subsonic transport. Journal of Aircraft, 2004, 41(1): 10-25.
[6] Ghigliazza H H, Val R M, Perez E, et al. Wake of transport flying wings. Journal of Aircraft, 2007, 44(2): 558-562.
[7] Zhang M, Rizzi A, Meng R, et al. Aerodynamic design considerations and shape optimization of flying wings in transonic flight. AIAA-2012-5402, 2012.
[8] Vicroy D D, Loser T D, SchÜtte A. Static and forced-oscillation tests of a generic unmanned combat air vehicle. Journal of Aircraft, 2012, 49(6): 1558-1583.
[9] Tomac M, Rizzi A, Nangia R K, et al. Engineering methods applied to an unmanned combat air vehicle configuration. Journal of Aircraft, 2012, 49(6): 1610-1618.
[10] Wakayama S. Blended-wing-body optimization problem setup. AIAA-2000-4740, 2000.
[11] Wan Z Q, Liu D Y, T C H, et al. Studies on the influence of spar position on aeroelastic optimization of a large aircraft wing. Science China Technological Sciences, 2012, 55(1): 117-124.
[12] Xiao Z P. Aeroelastic robust optimization methodology for aircraft design. Beijing: School of Aeronautic Science and Engineering, Beihang University, 2010. (in Chinese) 肖志鹏. 飞机气动弹性鲁棒优化设计方法. 北京: 北京航空航天大学航空科学与工程学院, 2010.
[13] Giles G L. Equivalent plate analysis of aircraft wing box structures with general planform geometry. Journal of Aircraft, 1986, 23(11): 859-864.
[14] Livne E. Equivalent plate structural modeling for wing shape optimization including transverse shear. AIAA Journal, 1994, 32(6): 1278-1288.
[15] Kapania R K, Youhua L. Static and vibration analyses of general wing structures using equivalent-plate models. AIAA Journal, 2000, 38(7): 1269-1277.
[16] Yang Y X, Wu Z G, Yang C. Flutter analyses of missile wing using equivalent plate model. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 833-840. (in Chinese) 杨佑绪, 吴志刚, 杨超. 基于等效板模型的弹翼颤振分析. 航空学报, 2011, 32(5): 833-840.
[17] ZONA. ZAERO Theoretical manual V7.4. Scottsdale: ZONA Technology Inc., 2006.
[18] Yang Y X, Wu Z G, Yang C, et al. An aeroelasticity analysis model oriented toward wing design. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1860-1868. (in Chinese) 杨佑绪, 吴志刚, 杨超, 等. 一种面向翼面设计的气动弹性分析模型. 航空学报, 2011, 32(10): 1860-1868.
[19] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 1945, 12(2): 69-77.
[20] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 1951, 18: 31-38.
[21] Frank H G, Daniel J I, Kapania R K. Structural and aeroelastic modeling of general planform wings with morphing airfoils. AIAA Journal, 2002, 40(4): 628-637.
[22] Yang Y X, Wu Z G, Yang C. Equivalent plate modeling for complex wing configurations. Procedia Engineering, 2012, 31: 409-415.
[23] Yang C, Yang Y X, Wu Z G. Shape sensitivities analysis of flutter characteristics of a low aspect ratio wing using analytical method. Science China Technological Sciences, 2012, 55(12): 3370-3377.
[24] Wu Z G, Yang C. Aeroservoelastic design optimization of flexible wings. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 570-573. (in Chinese) 吴志刚, 杨超. 机翼的气动伺服弹性优化设计研究. 航空学报, 2006, 27(4): 570-573.
[25] Holland J H. Adaptation in natural and artificial system. Cambridge: The MIT Press, 1992: 1-50.
[26] Haftka R T, GÜrdal Z. Penalty function methods. Elements of structural optimization. London: Kluwer Academic Publishers, 1992: 186-198.
[27] Xuan G N, Cheng R W. Genetic algorithms and engineering design. Yu X J, translated. Beijing: Tsinghua University Press, 2004: 21-30. (in Chinese) 玄光男, 程润伟. 遗传算法与工程优化. 于韵杰, 译. 北京: 清华大学出版社, 2004: 21-30.
/
〈 | 〉 |