材料工程与机械制造

TC4-DT钛合金磨削表面特性及其摩擦磨损性能

  • 胥军 ,
  • 卢文壮 ,
  • 王晗 ,
  • 朱延松 ,
  • 黄群超 ,
  • 左敦稳
展开
  • 1. 南京航空航天大学 机电学院, 江苏 南京 210016;
    2. 江苏省精密与微细制造技术重点实验室, 江苏 南京 210016
胥军 男,硕士研究生。主要研究方向:现代表面技术。Tel:025-84892804 E-mail:819103142@qq.com;卢文壮 男,博士,教授,博士生导师。主要研究方向:现代表面技术,智能制造及制造自动化,超硬材料及工具。Tel:025-84891686 E-mail:luwz991@sina.com;王晗 男,硕士研究生。主要研究方向:现代表面技术。Tel:025-84892804 E-mail:Bestwishes329@126.com;朱延松 男,博士研究生。主要研究方向:现代表面技术。Tel:025-84891585 E-mail:64271093@qq.com;黄群超 男,硕士研究生。主要研究方向:先进制造技术。Tel:025-84892804 E-mail:523698483@qq.com;左敦稳 男,博士,教授,博士生导师。主要研究方向:精密加工技术,微纳米切削加工技术。Tel:025-84890249 E-mail:imit505@nuaa.edu.cn

收稿日期: 2013-05-06

  修回日期: 2013-07-22

  网络出版日期: 2013-07-29

基金资助

国家自然科学基金(51275230);江苏省普通高校研究生科研创新计划资助项目(CXZZ12_0142);江苏省高校优势学科建设工程资助项目

Characteristics and Wear Properties of Grinding Surface of Titanium Alloy TC4-DT

  • XU Jun ,
  • LU Wenzhuang ,
  • WANG Han ,
  • ZHU Yansong ,
  • HUANG Qunchao ,
  • ZUO Dunwen
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Provincial Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016, China

Received date: 2013-05-06

  Revised date: 2013-07-22

  Online published: 2013-07-29

Supported by

National Natural Science Foundation of China(51275230);The Program for Postgraduates Research Innovation in University of Jiangsu Province(CXZZ12_0142);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

钛合金是一种典型难磨削加工材料,磨削表面易出现烧伤、裂纹等热损伤。本文开展了TC4-DT钛合金磨削实验,通过扫描电镜(SEM)、能谱(EDS)、X射线衍射(XRD)、显微硬度仪、金相显微镜及球-盘摩擦磨损实验仪研究了其表面特性及摩擦磨损性能。结果表明:低速磨削表面质量好,摩擦磨损性能较基体略提高;当砂轮线速度为80 m/s时,磨削表面质量良好,摩擦系数为0.38,较基体降低40%;而砂轮线速度为100 m/s时,磨削表面出现严重烧伤、网状裂纹。因此选择合理的高速磨削工艺可避免烧伤、裂纹等热损伤缺陷,并可有效改善表面摩擦磨损性能;磨削表面干摩擦磨损机制为磨粒磨损、粘着磨损和剥层磨损。

本文引用格式

胥军 , 卢文壮 , 王晗 , 朱延松 , 黄群超 , 左敦稳 . TC4-DT钛合金磨削表面特性及其摩擦磨损性能[J]. 航空学报, 2014 , 35(2) : 567 -573 . DOI: 10.7527/S1000-6893.2013.0344

Abstract

Titanium alloy is a difficult-to-grind material. The grinding surface can be easily damaged during the grinding process because of the high grinding temperature. Grinding experiments were performed in this study to investigate the grinding surface properties of titanium alloy TC4-DT using the SEM, EDS, XRD, Microhardness tester, Metallographic microscope and ball-disk friction wear tester. The results show that good quality grinding surface with improved wear property of TC4-DT can be obtained when the grinding speed is relatively low. When the grinding speed is 80 m/s, good quality surface is obtained with the friction coefficient of 0.38, which is 40% lower than the matrix. However, burns and micro cracks appear when the grinding speed is 100 m/s. So burns and cracks can be avoided by choosing reasonable grinding parameters. The dry wear mechanisms of the grinding surface are adhesive abrasion, abrasive grain abrasion and delamination abrasion.

参考文献

[1] Zhu Z S, Wang X N, Tong L, et al. Studies of new-type titanium alloys for aviation industry application in China[J]. Titanium Industry Progress, 2007, 24(6): 28-32. (in Chinese) 朱知寿, 王新南, 童路, 等. 中国航空结构用新型钛合金研究[J]. 钛工业进展, 2007, 24(6): 28-32.

[2] Xu Y F, Liu H Q, Yi D Q, et al. Anti-phase boundary-like structure in α" martensite of TC21 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1366-1371.

[3] Hussey B, Wilson J. Light alloy-directory and databook[M]. London: Chapman & Hall, 1998: 320-342.

[4] Lin Y X, Han C X. Modern development of research and technology in titanium alloy[J]. Rare Materials and Engineering, 1994, 23(3): 74-80. (in Chinese) 林永新, 韩传玺. 钛合金研究与工艺技术的最新进展[J].稀有金属材料与工程, 1994, 23(3): 74-80.

[5] Zhang Y P, Qin Y. Study of surface integrality on high speed milling titanium[J]. Machinery Design and Manufacture, 2006(9): 106-107. (in Chinese) 张义平, 秦义. 钛合金高速铣削表面完整性研究[J]. 机械设计与制造, 2006(9): 106-107.

[6] Zhang X Y, Zhao Y Q, Bai C G. Titanium alloy and its applications[M]. Beijing: Chemical Industry Press, 2005: 1-5. (in Chinese) 张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005: 1-5.

[7] Leyesns C, Peters M. Titanium and titanium alloy[M]. Beijing: Chemical Industry Press, 2005: 10-21.

[8] Reng J X, Kang R K, Shi X K. Grinding of difficult-to-cut materials[M]. Beijing: National Defence Industry Press, 1999: 55-62. (in Chinese) 任敬心, 康仁科, 史兴宽. 难加工材料磨削[M]. 北京: 国防工业出版社, 1999: 55-62.

[9] Du S G, Lv C, Ren J X, et al. Study on surface morphology and microstructure of titanium alloy TC4 under high-speed milling[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1711-1715. (in Chinese) 杜随更, 吕超, 任军学, 等. 钛合金TC4高速铣削表面形貌及表层组织研究[J]. 航空学报, 2008, 29(6): 1711-1715.

[10] Ren J X, Kang R K, Wu X L, et al. Grinding burn and crack of titanium alloy[J]. Manufacturing Technology & Machine Tool, 2000(10): 40-42. (in Chinese) 任敬心, 康仁科, 吴小玲, 等. 钛合金的磨削烧伤与磨削裂纹[J]. 制造技术与机床, 2000(10): 40-42.

[11] Kang R K, Yuan T Q, Ren J X. Effect of grinding fluid on grinding properties of vitrified bonded CBN wheel[J]. Journal of Northwestern Poly Technical University, 2000, 18(4): 527-531. (in Chinese) 康仁科, 原庭琼, 任敬心. 陶瓷结合剂砂轮难磨削加工材料时磨削液的作用[J]. 西北工业大学学报, 2000, 18(4): 527-531.

[12] Xu X P, Yu Y P, Huang H, et al. Mechanism of abrasive wear in the grinding of titanium(TC4) and nickel(K417)alloys[J]. Wear, 2003(255): 1421-1426.

[13] Yu X Q. Meterial removal mechanisms in grinding aeronautical alloys, part1: Experimets and results[J]. Key Engineering Materials, 2004(259): 318-323.

[14] Yao X F, Xie F Q, Han Y, et al. Effect of temperature on wear properties and friction coefficient of TC4[J]. Rare Materials and Engineering, 2012, 42(8): 1464-1466.

[15] Meng Q W, Geng L, Wang C H, et al. Friction behavior of titanium alloy in two heat treatments[J]. Transaction of Daqing Petroleum Institute, 2006, 30(4): 46-50. (in Chinese) 孟庆武, 耿林, 王春华, 等. 两种热处理钛合金的摩擦磨损性能[J]. 大庆石油学院学报, 2006, 30(4): 46-50.

文章导航

/