周向平均方法在某风扇/增压级分析中的应用
收稿日期: 2013-04-09
修回日期: 2013-07-04
网络出版日期: 2013-07-15
基金资助
国家自然科学基金(50736007,51006005,51236001)
Application of Circumferentially Averaged Method in Fan/Booster
Received date: 2013-04-09
Revised date: 2013-07-04
Online published: 2013-07-15
Supported by
National Natural Science Foundation of China (50736007, 51006005, 51236001)
通过对三维(3D)Navier-Stokes方程进行周向平均,得到了通流模型的控制方程,对其采用时间推进有限体积方法进行数值求解。为实现风扇/增压级在设计初期的快速性能评估,考察了周向平均方法在风扇/增压级分析中的准确性。分别利用NUMECA三维数值模拟软件和周向平均通流模型(CAM)对某高通流风扇/增压级进行了性能分析,从对比结果来看,周向平均通流模型在近设计点给出了与三维数值模拟十分接近的特性参数,最大误差不超过2.0%。在风扇转子中,由于周向平均通流模型能捕获通道激波,其物理本质与三维平均结果有所区别,因此径向参数分布与三维有所差异。而在亚声速流动下的增压级及外涵道各叶片排出口参数的径向分布与三维数值模拟结果都能很好地吻合。
万科 , 朱芳 , 金东海 , 桂幸民 . 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报, 2014 , 35(1) : 132 -140 . DOI: 10.7527/S1000-6893.2013.0333
The governing equations of a throughflow model are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. In order to rapidlly obtain the performance predictions and flow fields of fan/booster in the preliminary design stage, the rebiability of circumferentially averaged method (CAM) is investigated. A high throughflow fan/booster is evaluated by 3D numerical simulation NUMECA and a circumferentially averaged throughflow model. The results reveal that the performance predicted by NUMECA at the near design point is very close to the 3D results, with a maximum error under 2.0%. As the passage shock can be captured by circuferentially averaged method in the fan, which is physically at variance with the 3D averaged results, the total pressure ratio and adiabatic efficiency radial distributions are somewhat different from the 3D computation results. In the subsonic flow, the radial distributions of blade rows in the booster and bypass fit well with the 3D simulation results.
[1] Smith L H, Jr. The radial-equilibrium equation of turbomachinery[J]. Journal of Engineering for Power, 1966, 88(1): 1-12.
[2] Jin H L, Jin D H, Li X J, et al. A time-marching throughflow model and its application in transonic axial compressor[J]. Journal of Thermal Science, 2010, 19(6): 519-525.
[3] Horlock J H, Denton J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Transactions of the ASME Journal of Turbomachinery, 2005, 127(1): 5-13.
[4] Denton J D, Dawes W N. Computational fluid dynamics for turbomachinery design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(2): 107-124.
[5] Spurr A. The prediction of 3D transonic flow in turbomachinery using a combined throughflow and blade-to-blade time marching method[J]. International Journal of Heat Fluid Flow, 1980, 2(4): 189-199.
[6] Baralon S, Erikson L E, Hall U. Validation of a throughflow time-marching finite-volume solver for transonic compressors, ASME Paper, 1998-GT-47[R]. 1998.
[7] Li X J, Jin H L, Gui X M. Performance numerical investigation of double-channel fan/compressor[J]. Journal of Aerospace Power, 2009, 24(12): 2719-2726. (in Chinese) 李晓娟, 金海良, 桂幸民. 风扇/增压级内外涵联算的特性数值模拟[J]. 航空动力学报, 2009, 24(12): 2719-2726.
[8] Simon J F, Leonard O. Modeling of 3-D losses and deviations in a throughflow analysis tool[J]. Journal of Thermal Science, 2007, 16(3): 1-7.
[9] Jin H L. Application of circumferentional average method in multistage axial fan/compressor design and analysis[D]. Beijing: School of Energy and Power Engineering, Beihang University, 2011. (in Chinese) 金海良. 周向平均方法在多级轴流风扇/压气机设计与分析中的应用[D]. 北京: 北京航空航天大学能源与动力工程学院, 2011.
[10] Wan K, Jin H L, Jin D H, et al. Influence of non-axisymmetric terms on circumferentially averaged method in fan/compressor[J]. Journal of Thermal Science, 2013, 22(1): 13-22.
[11] Zhu F, Jin D H, Gui X M. Corner flow control in high through-flow axial commercial fan/booster using blade 3-D optimization[J]. Journal of Thermal Science, 2012, 21(1): 32-41.
[12] Baralon S, Erikson L E, Hall U. Evaluation of high-order terms in the throughflow approximation using 3D Navier-Stokes computations of a transonic compressor rotor. ASME Paper[R], 1999-GT-74, 1999.
[13] Simon J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liège: Faculty of Applied Science, University of Liège, 2007.
[14] Ning F F. Numerical investigations of flows in transonic compressors with real geometrical complexities[D]. Beijing: School of Energy and Power Engineering, Beihang University, 2002. (in Chinese) 宁方飞. 考虑真实几何复杂性的压气机内部流动的数值模拟[D]. 北京: 北京航空航天大学能源与动力工程学院, 2002.
[15] Gentry R A, Martin R E, Daly B J. An Eulerian differencing method for unsteady compressible flow problems[J]. Journal of Computational Physics, 1966, 1(1): 87-118.
[16] Bosman C, Marsh H. An improved method for calculating the flow in turbo-machines, including a consistent loss model[J]. Journal of Mechanical Engineering Science, 1974, 16(1): 25-31.
[17] Edwards J R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations[J]. Computers and Fluids, 1997, 26(6): 635-659.
[18] Frost G R, Wennerstrom A J. The design of axial compressor airfoils using arbitrary camber lines, ARL-73-0107 (AD 765165)[R]. 1973.
[19] Ji G F, Gui X M. A blading design method for axial/centrifugal compressor airfoils using arbitrary camber lines[J]. Journal of Aerospace Power, 2009, 24(1): 150-156. (in Chinese) 冀国锋, 桂幸民. 轴流/离心压气机通用任意中弧造型设计方法研究[J]. 航空动力学报, 2009, 24(1): 150-156.
/
〈 | 〉 |