机翼对自转旋翼机纵向稳定性的影响
收稿日期: 2013-03-04
修回日期: 2013-05-23
网络出版日期: 2013-06-28
基金资助
国家自然科学基金(11202097);航空科学基金(2011ZA52004);江苏高校优势学科建设工程资助项目
Effects of Wing on Autogyro Longitudinal Stability
Received date: 2013-03-04
Revised date: 2013-05-23
Online published: 2013-06-28
Supported by
National Natural Science Foundation of China(11202097); Aeronautical Science Foundation of China(2011ZA52004); Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
为了研究机翼对自转旋翼机纵向稳定性的影响,针对某复合式自转旋翼机,建立了基于状态空间法描述的非线性全量方程数学模型。该模型包含自转旋翼、机身、螺旋桨、机翼和尾翼的气动模型、动态入流模型和稳定性分析模型。运用该模型对比研究了样例自转旋翼机和样例复合式自转旋翼机的纵向稳定性。研究结果表明:机翼的增加对于浮沉模态和短周期模态稳定性是有利的;对于旋翼转速模态稳定性是不利的,在设计复合式自转旋翼机时可以考虑增加旋翼桨尖配重来提高此模态的稳定性。机翼的纵向位置对自转旋翼机的纵向稳定性有显著影响。在机翼纵向位置能满足配平约束条件下,机翼纵向位置越靠后,迎角稳定性越好,但旋翼转速稳定性越差。在设计复合式自转旋翼机时,机翼纵向位置的选择要综合考虑这两个因素进行折中。
王俊超 , 李建波 . 机翼对自转旋翼机纵向稳定性的影响[J]. 航空学报, 2014 , 35(1) : 151 -160 . DOI: 10.7527/S1000-6893.2013.0268
Based on a gyroplane, a nonlinear mathematical model of coupled equations described by the state space method is presented in this paper in order to study the effects of the wing on autogyro longitudinal stability. The model consists of an aerodynamic model (which includes an autorotating rotor, a fuselage, a propeller, and a wing and a tail aerodynamic model), a dynamic inflow model and a stability analysis model. The model is applied to study the sample autogyro and sample gyroplane longitudinal stability. By contrastive analysis, the results show that the wing is favorable for phugoid mode and short period mode stability. It is unfavorable for rotor speed mode stability but the rotor blade tip weight could be increased to improve the mode stability when the gyroplane is designed. The wing longitudinal position has a significant influence on the autogyro longitudinal stability. When the wing longitudinal position satisfies the trim constraints, the more rearward the wing is located, the better is the angle of attack stability of the gyroplane, but the worse is its rotor speed stability. The wing longitudinal position should be selected eclectically by considering these two factors when a gyroplane is designed.
Key words: rotor; wing; autogyro; state space method; stability; mathematical model; time domain analysis; flight path
[1] Harris F D. Introduction to autogyros, helicopters, and other V/STOL aircraft[R]. California: NASA Ames Research Center, 2011.
[2] Anon. British civil airworthiness requirements section T: light gyroplane design requirements[M]. Cheltenham: U.K. Civil Aviation Authority, 1993: 1-30.
[3] Niemi E E, Gowda B V. Gyroplane rotor aerodynamics revisited-blade flapping and RPM variation in zero-g flight[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011: 1-17.
[4] Bagiev M, Thomson D G. Handling qualities evaluation of an autogiro against the existing rotorcraft criteria[J]. Journal of Aircraft, 2009, 46(1): 168-174.
[5] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1791-1799. (in Chinese) 崔钊, 韩东, 李建波. 加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报, 2012, 33(10): 1791-1799.
[6] Leishman J G. Development of the autogiro:a technical perspective[J]. Journal of Aircraft, 2004, 41(4): 765-781.
[7] Groen J. Groen brothers aviation: autogiros in the 21st century[C]//AIAA/ICAS International Air and Space Symposium and Exposition, 2003: 1-8.
[8] Carter J W. CarterCopter—a high technology gyroplane[C]//Proceedings of the American Helicopter Society Vertical Lift Aircraft Design Conference, 2000: 1-9.
[9] Floros M W, Johnson W. Performance analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 4th Decennial Specialists' Conference on Aeromechanics, 2004: 1-19.
[10] Floros M W, Johnson W. Stability analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 60th Annual Forum, 2004: 1-24.
[11] Syrovy G, Yassini S. Canard wing concept for compound helicopter[C]//American Helicopter Society 61th Annual Forum, 2005: 1-7.
[12] Carter J W. Gyroplane: United States, 5727754. 1998-03-17.
[13] Houston S S. Validation of a rotorcraft mathematical model for autogyro simulation[J]. Journal of Aircraft, 2000, 37(3): 403-409.
[14] Thomson D G, Houston S S. Application of parameter estimation to improved autogyro simulation model fidelity[J]. Journal of Aircraft, 2005, 42(1): 33-40.
[15] Houston S S. Indentification of autogyro longitudinal stability and control characteristics[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 391-399.
[16] Rezgui D, Lowenberg M H, Bunniss P C. Experimental and numerical analysis of the stability of an autogiro teetering rotor[C]//Americian Helicopter Society 64th Annual Forum, 2008: 1-15.
[17] Wang H J, Gao Z. Aerodynamic virtue and steady rotary speed of autorotating rotor[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4): 337-339. (in Chinese) 王焕瑾, 高正. 自转旋翼的气动优势和稳定转速[J]. 航空学报, 2001, 22(4): 337-339.
[18] Zhu Q H. Research on key technologies of gyroplane preliminary design[D]. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 朱清华. 自转旋翼飞行器总体设计关键技术研究[D]. 南京: 南京航空航天大学航空宇航学院, 2007.
[19] Ji L Q, Zhu Q H, Cui Z, et al. Research on aerodynamic characteristics of autorotating coaxial twin-rotor[J]. Journal of Aerospace Power, 2012, 27(9): 2013-2020. (in Chinese) 姬乐强, 朱清华, 崔钊, 等. 共轴双旋翼自转气动特性[J]. 航空动力学报, 2012, 27(9): 2013-2020.
[20] Peters D A, HaQuang N. Dynamics inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68.
/
〈 | 〉 |