流体力学与飞行力学

激光输能无人机的概念研究

  • 金星 ,
  • 常浩 ,
  • 崔晓阳
展开
  • 1. 装备学院 激光推进及其应用国家重点实验室, 北京 101416;
    2. 装备学院 研究生院, 北京 101416
金星 男, 博士, 研究员, 博士生导师。主要研究方向: 激光推进技术。Tel: 010-66364435 E-mail: jinxing_beijing@sina.com;常浩 男, 博士研究生。主要研究方向: 激光推进技术。Tel: 010-66364435 E-mail: changhao5976911@163.com;崔晓阳 女, 博士研究生。主要研究方向: 激光推进技术。Tel: 010-66364435 E-mail: maplecui@163.com

收稿日期: 2013-04-18

  修回日期: 2013-05-28

  网络出版日期: 2013-06-21

Concept Research of Laser-motive UAV

  • JIN Xing ,
  • CHANG Hao ,
  • CUI Xiaoyang
Expand
  • 1. State Key Laboratory of Laser Propulsion & Application, Academy of Equipment, Beijing 101416, China;
    2. Postgraduate School, Academy of Equipment, Beijing 101416, China

Received date: 2013-04-18

  Revised date: 2013-05-28

  Online published: 2013-06-21

摘要

激光输能无人机(UAV)由于飞行高度高和续航时间长等优势得到关注。从激光输能角度,基于无人机质量评估模型,建立了激光辐照功率密度和无人机输出功率以及飞行性能之间的函数关系。以Sky Sailor太阳能无人机为例,计算分析了激光输能无人机和太阳能无人机的升限和飞行包络。结果表明由于激光辐照功率密度大和光/电之间能量转化效率高,与太阳能无人机比较,可携带的有效载荷更大、升限更高、爬升和抗扰能力更强;随着激光辐照功率密度增大,即使电子设备和有效载荷的质量和功耗都增大,飞行包络很宽,同时,飞行速度增大,但实际升限有所降低。

本文引用格式

金星 , 常浩 , 崔晓阳 . 激光输能无人机的概念研究[J]. 航空学报, 2013 , 34(9) : 2074 -2080 . DOI: 10.7527/S1000-6893.2013.0291

Abstract

The laser-motive unmanned aerial vehicle (UAV) has received wide attention due to its high flight altitude and long fight duration. The relationship between the laser radiation power density, the output power density of the UAV and flight performance is set up based on a mass evaluation model of the UAV. The ceiling and flight envelope between laser-motive and solar-motive UAVs are analyzed taking the Sky Sailor UAV as an example. The results show that a laser-motive UAV has the advantage of carrying more payload, having high ceiling and stronger ability to resist disturbance as compared with a solar-motive UAV. Besides, with the increase of laser radiation power density, the flight envelope is broader even though the mass and power consumption of the electronic devices and payload increase. Meanwhile, the flight velocity increases, but the actual ceiling decreases.

参考文献

[1] Vineet V K, Kumar A, Makade R, et al. Solar power the future of aviation industry. International Journal of Engineering Science and Technology, 2011, 3(3): 2051-2058.

[2] Richard M. Feasibility of laser power transmission to a high-altitude unmanned aerial vehicle. ADA544926, 2011.

[3] Li X K, Zhang Y L, Chen M S, et al. Numerical simulation for impact of laser power and propellant on performance of continuous-wave laser-sustained plasma thruster. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 27-34.(in Chinese) 李小康, 张育林, 程谋森, 等. 激光功率和工质对连续激光推力器性能影响的数值模拟. 航空学报, 2011, 32(1): 27-34.

[4] Hong Y J, Wang G Y, Dou Z G. State of art of laser ablation microthruster. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1555-1565.(in Chinese) 洪延姬, 王广宇, 窦志国. 激光烧蚀微推力器研究进展. 航空学报, 2009, 9(30): 1555-1565.

[5] NASA dryden fact sheets-beamed laser power. Washington: National Aeronautics and Space Administration, 2008. http://www.nasa.gov/centers/dryden/news/FactSheets/FS-087-DFRC.html.

[6] Tim B. Recent demonstrations of laser power beaming at DFRC and MSFC. AIP Conference Proceedings, 2005, 766: 73-85.

[7] Power beaming challenge. Washington: National Aeronautics and Space Administration, 2012. http://www.nasa.gov/offices/oct/early_stage_innovation/centennial_challenges/beaming_tether/index.html.

[8] Nugent T. Video of laser-powered quadrocopter endurance flight. LaserMotive, 2010. http://lasermotive.com/2010/11/12/video-of-laser-powered-quadrocopter-endurance-flight/.

[9] Norris G. UAV demonstrates utility of laser power. Aviation Week & Space Technology, 2012. http://www.aviationweek.com/Article.aspx?id=/article-xml/AW_09_03_2012_p64-486128.xml.

[10] Howell J T, O'Neill M J, Fork R L. Advanced receiver/converter experiments for laser wireless power transmission. Granada: Solar Power from Space (SPS04) and 5th Wireless Power Transmission (WPT5) Conference, 2004: 1-8.

[11] Nugent T J, Kare J T. Laser power for UAVs. http://www.lasermotive.com.

[12] Runge H, Rack W, Ruiz-Leon A, et al. A solar powered HALE-UAV for arctic research. The 1st CEAS European Air and Space Conference, 2007: 1-6.

[13] Bhatt M R. Solar power unmanned aerial vehicle: high altitude long endurance applications (HALE-SPUAV). San Jose: San Jose State University, 2012.

[14] Noth A. Design of solar powered airplanes for continuous flight. Zurich: Ingenieur en Microtechnique Ecole Polytechnique Felerale de Lausanne, 2008.

[15] Halla D W, Hall S A. Structural sizing of a solar powered aircraft. NASA-CR-172313. 1984.

文章导航

/