电子与控制

一种改进的强跟踪UKF算法及其在SINS大方位失准角初始对准中的应用

  • 郭泽 ,
  • 缪玲娟 ,
  • 赵洪松
展开
  • 北京理工大学 自动化学院, 北京 100081
郭泽 男,博士研究生。主要研究方向:捷联惯导非线性初始对准。Tel:010-68918962 E-mail:lovepeach@bit.edu.cn;缪玲娟 女,博士,教授,博士生导师。主要研究方向:惯性导航、INS/GPS组合导航、多传感器信息融合。Tel:010-68913791 E-mail:miaolingjuan@bit.edu.cn;赵洪松 男,博士研究生。主要研究方向:惯性导航、鲁棒滤波。Tel:010-68918384 E-mail:3120100354@bit.edu.cn

收稿日期: 2013-03-26

  修回日期: 2013-06-04

  网络出版日期: 2013-06-17

基金资助

国家自然科学基金(61153002)

An Improved Strong Tracking UKF Algorithm and Its Application in SINS Initial Alignment Under Large Azimuth Misalignment Angles

  • GUO Ze ,
  • MIAO Lingjuan ,
  • ZHAO Hongsong
Expand
  • School of Automation, Beijing Institute of Technology, Beijing 100081, China

Received date: 2013-03-26

  Revised date: 2013-06-04

  Online published: 2013-06-17

Supported by

National Natural Science Foundation of China (61153002)

摘要

针对现有的强跟踪无迹卡尔曼滤波(UKF)算法存在理论依据不足和滤波性能欠佳等问题,从正交性原理出发,通过严谨的推导得到强跟踪UKF成立的充分条件,在此基础上提出一种改进的强跟踪UKF算法。该算法无需求解雅可比矩阵且计算量较小,渐消因子的作用位置以及求解公式均不同于原始的强跟踪滤波器。给出了该算法的流程和渐消因子的求解方法,证明了该算法满足强跟踪滤波器的充分条件,并分析了其渐消因子的作用机理。进行了捷联惯性导航系统(SINS)大方位失准角初始对准仿真,结果验证了所提强跟踪UKF算法的正确性和有效性。

本文引用格式

郭泽 , 缪玲娟 , 赵洪松 . 一种改进的强跟踪UKF算法及其在SINS大方位失准角初始对准中的应用[J]. 航空学报, 2014 , 35(1) : 203 -214 . DOI: 10.7527/S1000-6893.2013.0296

Abstract

Against the lack of theoretical basis and poor filtering performance of the existing strong tracking unscented Kalman filter (UKF) algorithms, the sufficient condition of a strong tracking UKF is rigorously derived in this paper from the orthogonality principle, based on which an improved strong tracking UKF algorithm is proposed. This new algorithm requires less computation than the existing strong tracking UKF since it does not have to calculate the Jacobian matrix, and it is different from the original strong tracking filter in both the position and solution of the fading factor. This study presents the algorithm flow and the solution to the fading factor, and proves that the improved algorithm satisfies the sufficient condition of strong tracking UKF. Furthermore, the action mechanism of the fading factor is analyzed. The results of the strapdown inertial navigation system (SINS) initial alignment simulation under large azimuth misalignment angles verify the validity and effectiveness of the improved strong tracking UKF algorithm.

参考文献

[1] Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison of EKF and UKF for spacecraft localization via angle measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 75-84.

[2] Li W L, Jia Y M. Consensus-based distributed multiple-model UKF for jump Markov nonlinear systems[J]. IEEE Transactions on Automatic Control, 2012, 57(1): 227-233.

[3] Julier S, Uhlmann J, Durrant Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.

[4] Li W L, Wang J L, Lu L Q, et al. A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques[J]. Sensors, 2013, 13(1): 1046-1063.

[5] Mao Y L, Chen J B, Song C L, et al. Scaled UKF with reduced sigma points for initial alignment of SINS[C]//30th Chinese Control Conference, 2011: 106-110.

[6] Hu H D, Huang X L. SINS/CNS/GPS integrated navigation algorithm based on UKF[J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 102-109.

[7] Cao J J, Fang J C, Sheng W, et al. Study and application of low-cost multi-sensor integrated navigation for small UAV autonomous flight[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1923-1929. (in Chinese) 曹娟娟, 房建成, 盛蔚, 等. 低成本多传感器组合导航系统在小型无人机自主飞行中的研究和应用[J]. 航空学报, 2009, 30(10): 1923-1929.

[8] Zhou D H, Ye Y Z. Modern fault diagnosis and fault tolerant control[M]. Beijing: Tsinghua University Press, 2000. (in Chinese) 周东华, 叶银忠. 现代故障诊断与容错控制[M]. 北京: 清华大学出版社, 2000.

[9] Wang X X, Zhao L, Xia Q X, et al. Strong tracking filter based on unscented transformation[J]. Control and Decision, 2010, 25(7): 1063-1068. (in Chinese) 王小旭, 赵琳, 夏全喜, 等. 基于 Unscented 变换的强跟踪滤波器[J]. 控制与决策, 2010, 25(7): 1063-1068.

[10] Chen Y, Hu C H, Zhou Z J, et al. Method of improving square-root center difference Kalman filter with application to incipient failure detection[J]. Acta Automatica Sinica, 2012, 38(9): 1063-1074. (in Chinese) 陈业, 胡昌华, 周志杰, 等. 一种改进的SR-CDKF 算法及其在早期微小故障检测中的应用[J]. 自动化学报, 2012, 38(9): 1063-1074.

[11] Cui N G, Han P X, Mu R J. The fault-detection method of a navigation system based on a strong tracking unscented Kalman filter[J]. Journal of Harbin Engineering University, 2011, 32(10): 1295-1299. (in Chinese) 崔乃刚, 韩鹏鑫, 穆荣军. 基于强跟踪 UKF 的导航系统故障检测方法[J]. 哈尔滨工程大学学报, 2011, 32(10): 1295-1299.

[12] Cheng H B, Ni S H, Huang G R, et al. Application of UKF strong tracking filter in fault detection of integrated navigation system[J]. Piezoelectrics and Acoustooptics, 2011, 33(6): 901-905. (in Chinese) 程洪炳, 倪世宏, 黄国荣, 等. UKF强跟踪滤波在组合导航故障诊断中的应用[J]. 压电与声光, 2011, 33(6): 901-905.

[13] Lu H Y, Zhao W, Xiong J, et al. Exploration of strong tracking UKF used in the SINS/GPS integrated navigation[J]. Avionics Technology, 2008, 39(4): 5-10. (in Chinese) 陆海勇, 赵伟, 熊剑, 等. 强跟踪UKF滤波在 SINS_GPS 组合导航中的应用研究[J]. 航空电子技术, 2008, 39(4): 5-10.

[14] Ye B, Yang B. Lunar probe autonomous navigation based on the nonlinear strong tracking filtering[J]. Aero-space Control, 2009, 27(3): 23-27. (in Chinese) 叶飚, 杨博. 一种强跟踪非线性衰减滤波的环月自主导航方法研究[J]. 航天控制, 2009, 27(3): 23-27.

[15] Yang W B, Li S Y. Autonomous navigation filtering algorithm for spacecraft based on strong tracking UKF[J]. Systems Engineering and Electronics, 2011, 33(11): 2485-2491. (in Chinese) 杨文博, 李少远. 基于强跟踪 UKF 的航天器自主导航间接量测滤波算法[J]. 系统工程与电子技术, 2011, 33(11): 2485-2491.

[16] Zhang W L, Zhu M Q, Chen Z H. An adaptive SLAM algorithm based on strong tracking UKF[J]. Robot, 2010, 32(2): 190-195. (in Chinese) 张文玲, 朱明清, 陈宗海. 基于强跟踪UKF的自适应SLAM算法[J]. 机器人, 2010, 32(2): 190-195.

[17] Ge Z X, Yang Y M, Wen X S. Strong tracking UKF method and its application in fault identification[J]. Chinese Journal of Scientific Instrument, 2008, 29(8): 1670-1674. (in Chinese) 葛哲学, 杨拥民, 温熙森. 强跟踪UKF方法及其在故障辨识中的应用[J]. 仪器仪表学报, 2008, 29(8): 1670-1674.

[18] Fu M Y, Deng Z H, Zhang J W. Kalman filtering theory and the application in navigation system[J]. Beijing: Science Press, 2003. (in Chinese) 付梦印, 邓志红, 张继伟. Kalman 滤波理论及其在导航系统中的应用[J]. 北京: 科学出版社, 2003.

[19] Yang Y X. Adaptive navigation and kinematic positioning[M]. Beijing: Surveying and Mapping Press, 2006. (in Chinese) 杨元喜. 自适应动态导航定位[M]. 北京: 测绘出版社, 2006.

[20] Yan G M, Yan W S, Xu D M. Application of simplified UKF in SINS initial alignment for large misalignment angles[J]. Journal of Chinese Inertial Technology, 2008, 16(3): 253-264. (in Chinese) 严恭敏, 严卫生, 徐德民. 简化UKF滤波在SINS大失准角初始对准中的应用[J]. 中国惯性技术学报, 2008, 16(2): 253-264.

[21] Hao Y L, Yang J W, Chen L, et al. Initial alignment of large azimuth misalignment based on square root central difference Kalman filter[J]. Journal of Chinese Inertial Technology, 2011, 19(2): 180-184. (in Chinese) 郝燕玲, 杨峻巍, 陈亮, 等. 基于平方根中心差分卡尔曼滤波的大方位失准角初始对准[J]. 中国惯性技术学报, 2011, 19(2): 180-184.

[22] Gao W X, Miao L J, Shen J. A method of resistance to disturbance for SINS initial alignment[J]. Journal of Beijing Institute of Technology, 2010, 30(1): 190-194. (in Chinese) 高伟熙, 缪玲娟, 沈军. 一种抗基座扰动的捷联惯导系统初始对准方法[J]. 北京理工大学学报, 2010, 30(1): 190-194.

[23] Li D D, Yan X J, Zhang C L. The research and application of MEMS inertial technology[J]. Navigation and Control, 2009, 8(2): 60-78. (in Chinese) 李丹东, 严小军, 张承亮. MEMS惯性技术的研究与应用综述[J]. 导航与控制, 2009, 8(2): 60-78.

文章导航

/