材料工程与机械制造

主被动复合驱动空间探测柔性伸杆机构的参数匹配

  • 楚中毅 ,
  • 雷宜安
展开
  • 1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100191;
    2. 北京航空航天大学 惯性技术重点实验室, 北京 100191
楚中毅 男,博士,副教授。主要研究方向:精密机构及其振动控制、空间机器人技术。Tel:010-82339013 E-mail:chuzy@buaa.edu.cn;雷宜安 男,硕士研究生。主要研究方向:空间探测柔性伸杆机构及其控制。Tel:010-82339013 E-mail:leiyian2007@126.com

收稿日期: 2013-04-24

  修回日期: 2013-06-13

  网络出版日期: 2013-06-14

基金资助

国家自然科学基金(51375034,50905006)

Parameter Matching for Deployable Manipulator with Active-passive Composite Driver in Space Probe

  • CHU Zhongyi ,
  • LEI Yian
Expand
  • 1. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
    2. Science and Technology on Inertial Laboratory, Beihang University, Beijing 100191, China

Received date: 2013-04-24

  Revised date: 2013-06-13

  Online published: 2013-06-14

Supported by

National Natural Science Foundation of China (51375034, 50905006)

摘要

基于主被动复合驱动的思想提出一种大伸展/收拢比、高载荷/自重比的新型伸缩式伸杆机构,以满足微纳探测器的实际应用需求,用于支撑各类探测载荷远离航天器本体,避免本体剩磁对空间待测信号的干扰,保证探测数据的准确性。首先,探索描述被动驱动源(弹簧铰链)的力矩驱动特性;然后,分析柔性伸杆的弯曲、扭转、压平和卷曲等力学性能。在此基础上,结合建立的柔性伸杆伸展速度、负载动能、弹簧铰链势能及主动驱动(电动机)力矩等参数的能量流约束方程,进行主、被动驱动和柔性伸杆的参数匹配研究;最后,利用有限元软件仿真和样机平台实验验证了参数匹配的合理性。仿真与实验结果表明,针对主被动复合驱动的空间探测柔性伸杆机构,通过合理的参数匹配,可实现柔性伸杆无褶皱地平稳伸展和收拢,为后续的机构设计和控制方案奠定了基础。

本文引用格式

楚中毅 , 雷宜安 . 主被动复合驱动空间探测柔性伸杆机构的参数匹配[J]. 航空学报, 2014 , 35(1) : 268 -278 . DOI: 10.7527/S1000-6893.2013.0308

Abstract

A deployable manipulator based on an active-passive composite driver is proposed to achieve a large magnification and load-weight ratio in applications of small spacecraft in space probe. The deployable manipulator helps to hold various instruments away from the spacecraft to avoid disturbance caused by the remanence of the spacecraft body and ensure measurement accuracy. First, the torque feature of the passive driver (hinged spring) is studied. Second, the mechanical features of the flexible boom such as bending, torsion, flattening and wrapping are analyzed. Then, the energy restriction conditions are deduced of the deployable velocity with payload kinematics, potential energy of the joint and the actuating torque of the active driver (an electric motor) to match the parameters of the active-passive driver and the flexible boom. Finally, the finite element method and experiment are used to validate the theoretical analysis. For the deployable manipulator based on an active-passive composite driver, the results show that with appropriate matching of the parameters unrumpled deployment and retractation of the flexible boom can be achieved, which prepares the way for mechanical design and control strategy in later work.

参考文献

[1] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67(1):12-26.

[2] Ma X R, Yu D Y, Sun J, et al. The researching evolvement of spacecraft deployment and driving mechanism[J]. Journal of Astronautics, 2006, 27(6): 1123-1131. (in Chinese) 马兴瑞, 于登云, 孙京, 等. 空间飞行器展开与驱动机构研究进展[J]. 宇航学报, 2006, 27(6): 1123-1131.

[3] Ge D M, Chen W J, Fu G Y, et al. Buckling theoretic analysis of coilable hingeless extendible/retractable space mast[J]. Chinese Journal of Computational Mechanics, 2007, 24(5):615-619. (in Chinese) 戈冬明, 陈务军, 付功义, 等. 盘绕式空间可展折叠无铰伸展臂的屈曲分析理论研究[J]. 计算力学学报, 2007, 24(5): 615-619.

[4] Yang Y, Ding X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1257-1265. (in Chinese) 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6): 1257-1265.

[5] Hachkowski M R, Peterson L D. A comparative history of the precision of deployable spacecraft structures[J]. CU-CAS-95-22, 1995.

[6] Cong Q. ERM and its aplications in deployable antennas of satellites[J]. Spacecraft Engineering, 1996, 5(1): 105-109. (in Chinese) 从强. ERM及其在卫星天线展开机构上的应用[J]. 航天器工程, 1996, 5(1): 105-109.

[7] Block J, Straubel M, Wiedemann M. Ultralight deployable booms for solar sails and other large gossamer structures in space[J]. Acta Astronautica, 2010, 68(7): 984-992.

[8] Fernandeza J M, Lappasa V J, Daton-Lovettb A J. Completely stripped solar sail concept using bi-stable reeled composite booms[J]. Acta Astronautica, 2010, 69(1): 78-85.

[9] Hakkak F, Khoddam S. On calculation of preliminary design parameters for lenticular booms[J]. Aerospace Engineering, 2006, 221(3): 377-384.

[10] Guest S D, Pellegrino S. Analytical models for bistable cylindrical shells[J]. The Royal Society, 2006, 462(2067): 839-854.

[11] Hoffait S, Bruls O, Granville D, et al. Dynamic analysis of the self-locking phenomenon in tape-spring hinges[J]. Acta Astronautica, 2010, 66(7):1125-1132.

[12] Yao X F, Ma Y J, Yin Y J, et al. Design theory and dynamic mechanical characterization of the deployable composite tube hinge[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4): 633-639.

[13] Soykasap Ö. Deployment analysis of a self-deployable composite boom[J]. Composite Structures, 2008, 89(3): 374-381.

[14] Mallikarachchi H M Y C, Pellegrino S. Quasi-static folding and deployment of ultrathin composite tape-spring hinges[J]. Journal of Spacecraft and Rockets, 2011, 48(1):187-198.

[15] Postma R W. Torque loss and stress relaxation in constant torque springs[C]//The 38th Aerospace Mechanisms Symposium. Virginia: Langley Research Center, 2006: 163-168.

[16] Shan H Z. Mechanics of materials courses[M]. Beijing: China Higer Education Press, 2004: 84-85, 201-205.(in Chinese) 单辉祖. 材料力学教程[M]. 北京: 高等教育出版社, 2004: 84-85, 201-205.

[17] Liu G. Decomposition-based friction compensation of mechanical systems[J]. Mechatronics, 2002, 12(5): 755-769.

[18] Rehnmark F, Pryor M, Carrington C. Development of a deployable nonmetallic boom for reconfigurable systems of small spacecraft[C]//The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. April 23-26, Honolulu, Hawaii, 2007: 2184-2205.

[19] Young W C, Budynas R G. Roark's formulas for stress and stress[M]. New York: McGraw-Hill Companies Inc, 2002: 766.

文章导航

/