材料工程与机械制造

高效强力复合铣A轴的动力学建模与自适应滑模控制

  • 赵鹏兵 ,
  • 史耀耀
展开
  • 西北工业大学 现代设计与集成制造技术教育部重点实验室, 陕西 西安 710072
赵鹏兵 男,博士研究生。主要研究方向:智能制造装备与现代数控系统。E-mail:zhpb83@163.com;史耀耀 男,博士,教授,博士生导师。主要研究方向:机电控制自动化,加工表面光整技术。Tel:029-88492851 E-mail:shiyy@nwpu.edu.cn

收稿日期: 2013-04-28

  修回日期: 2013-05-29

  网络出版日期: 2013-06-09

基金资助

国家科技重大专项(2013ZX04001081)

Dynamic Modeling and Adaptive Sliding Mode Control of A-axis for Efficient and Powerful Milling

  • ZHAO Pengbing ,
  • SHI Yaoyao
Expand
  • The MOE (Ministry of Education) Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-04-28

  Revised date: 2013-05-29

  Online published: 2013-06-09

Supported by

National Science and Technology Major Project (2013ZX04001081)

摘要

A轴单元作为五轴数控机床的关键功能部件,其控制精度直接影响工件的加工精度和表面质量。针对系统参数摄动和不确定性切削负载对A轴伺服系统控制精度的影响,分析了A轴驱动系统的动静态性能,讨论了驱动扭矩、负载扭矩、运动方向和系统参数之间的相互关系,并建立了系统的非线性动力学模型。基于该动力学模型,设计了自适应模糊滑模控制器(AFSMC),采用模糊系统对滑模控制律中的非线性函数项进行自适应逼近,并基于Lyapunov理论设计了模糊系统中可调参数的自适应律,同时,在滑模控制(SMC)的切换控制部分采用了指数趋近律。实验结果表明,所设计的AFSMC对不确定性负载扭矩和系统参数摄动具有较强的鲁棒性。与传统滑模控制(TSMC)相比,其在有效减小控制输入抖振的同时,使得跟踪控制精度提高了14.54%。

本文引用格式

赵鹏兵 , 史耀耀 . 高效强力复合铣A轴的动力学建模与自适应滑模控制[J]. 航空学报, 2014 , 35(2) : 555 -566 . DOI: 10.7527/S1000-6893.2013.0293

Abstract

Positioning precision of the A-axis as an essential assembly in a 5-axis CNC machine tool directly affects the machining accuracy and surface quality of the machined parts. Considering the influence of parameter perturbation and uncertain cutting force on the control precision of the A-axis, this paper analyzes the static and dynamic performance of the A-axis, discusses the relationships among the drive torque, load torque, motion direction and system parameters, and finally establishes a nonlinear dynamic model of the system. On the basis of this model, an adaptive fuzzy sliding mode control (AFSMC) is proposed. The fuzzy system is used to approximate the nonlinear functions in the sliding mode control law, and adaptive laws of the tunable parameters are designed based on Lyapunov theory. Meanwhile, the exponential reaching law is utilized in switching mode control (SMC). Experimental results show that the proposed AFSMC is robust to parameter perturbation and uncertain load torque. Compared with the traditional sliding mode control (TSMC), the proposed method can effectively reduce control input chattering and improve the tracking precision by 14.54%.

参考文献

[1] Young H T, Chuang L C, Gerschwiler K, et al. A five-axis rough machining approach for a centrifugal impeller[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(3-4): 233-239.

[2] Zhang K. Structural optimization and dynamics analysis on A/C biaxial rotary CNC universal milling head[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, 2010. (in Chinese) 张坤. A/C双摆角数控万能铣头结构优化设计与动力学分析[D]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2010.

[3] Zuo Z, Li D H, Dai Y P, et al. State compensating control for gyro-stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 141-148. (in Chinese) 左哲, 李东海, 戴亚平, 等. 陀螺稳定平台状态补偿控制[J]. 航空学报, 2008, 29(1): 141-148.

[4] Sun Y B, Jin S, Wang C Y. μ-Hspeed controller design for direct drive ring permanent magnet torque motor[J]. Proceedings of the CSEE, 2007, 27(3): 35-39. (in Chinese) 孙宜标, 金石, 王成元. 直接驱动环形永磁力矩电机μ-H速度控制器设计[J]. 中国电机工程学报, 2007, 27(3): 35-39.

[5] Sun Y B, Wei Q J, Wang C Y. Second order sliding mode control for permanent magnet ring torque motor used in compound A/C axe[J]. Electric Machines and Control, 2008, 12(2): 122-125. (in Chinese) 孙宜标, 魏秋瑾, 王成元. 复合A/C轴永磁环形力矩电机二阶滑模控制[J]. 电机与控制学报, 2008, 12(2): 122-125.

[6] Zhao P B, Shi Y Y, Ning L Q. Research on high-precision control of the A-axis in efficient and powerful milling machine for blisk manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1706-1715. (in Chinese) 赵鹏兵, 史耀耀, 宁立群. 整体叶盘高效强力复合铣A轴高精度控制技术研究[J]. 航空学报, 2012, 33(7): 1706-1715.

[7] Liu C S, Yu C M, Zhang W B. Technical overview of biaxial rotary CNC universal milling head[J]. Machinery, 2011, 49(56): 56-58. (in Chinese) 刘春时, 于春明, 张文博. 双摆角数控万能铣头技术概述[J]. 机械制造, 2011, 49(56): 56-58.

[8] Chen M S, Chen C H, Yang F Y. An LTR-observer-based dynamic sliding mode control for chattering reduction[J]. Automatica, 2007, 43(6): 1111-1116.

[9] Jin Y Q, Liu X D, Qiu W, et al. Time-varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4): 352-360.

[10] Xiao B, Hu Q L, Huo X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1869-1878. (in Chinese) 肖冰, 胡庆雷, 霍星, 等. 执行器故障的挠性航天器姿态滑模容错控制[J]. 航空学报, 2011, 32(10): 1869-1878.

[11] Chen H M, Ren J C, Su J P. Sliding mode control with varying boundary layers for an electro-hydraulic position servo system[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(1-2): 117-123.

[12] Liu J K, Sun F C. Nominal model-based sliding mode control with back stepping for 3-axis flight table[J]. Chinese Journal of Aeronautics, 2006, 19(1): 65-71.

[13] Liu X X, Hu Y W, Bu Y Z. Precision linearization control for permanent magnet synchronous motor based on sliding mode variable structure control[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1269-1273. (in Chinese) 刘贤兴, 胡育文, 卜言柱. 基于滑模变结构的永磁同步电机精确线性化控制[J]. 航空学报, 2008, 29(5): 1269-1273.

[14] Lin J, Lian R J, Huang C N, et al. Enhanced fuzzy sliding mode controller for active suspension systems[J]. Mechatronics, 2009, 19(7): 1178-1190.

[15] Lin T C. Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15 (12): 4084-4099.

[16] Noroozi N, Roopaei M, Jahromi M Z. Adaptive fuzzy sliding mode control scheme for uncertain systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(11): 3978-3992.

[17] Ho H F, Wong Y K, Rad A B. Robust fuzzy tracking control for robotic manipulators[J]. Simulation Modeling Practice and Theory, 2007, 15 (7): 801-816.

[18] Wang L X. A course in fuzzy systems and control[M]. New Jersey: Prentice-Hall International, Inc, 1996: 124-127.

[19] Yamaguchi T, Ando J, Tsuda T. Sliding velocity dependency the friction coefficient of Si-containing diamond-like carbon film under oil lubricated condition[J]. Tribology International, 2011, 44(11): 1296-1303.

[20] Slotine J J E, Li W P. Applied nonlinear control[M]. New Jersey: Prentice-Hall International, Inc, 1991: 296-298.

文章导航

/