基于新型终端滑模的航天器执行器故障容错姿态控制
收稿日期: 2013-04-16
修回日期: 2013-06-04
网络出版日期: 2013-06-09
基金资助
国家自然科学基金(61004072,61174200,61273175);教育部新世纪优秀人才计划(NCET-11-0801);黑龙江省青年科学基金(QC2012C024)
Novel Terminal Sliding Mode Based Fault Tolerant Attitude Control for Spacecraft Under Actuator Faults
Received date: 2013-04-16
Revised date: 2013-06-04
Online published: 2013-06-09
Supported by
National Natural Science Foundation of China (61004072, 61174200, 61273175); Program for New Century Excellent Talents in University (NCET-11-0801); Heilongjiang Province Science Fundation for Youths (QC2012C024)
针对受干扰的刚体航天器冗余执行器存在故障与控制受限的姿态跟踪控制问题,提出一类基于新型指数形式的非奇异快速滑模面(ENFTSM)与趋近律的姿态容错控制器设计方法。当部分推力器发生故障时,假设剩余推力器具有输出饱和特性且能提供足够推力保证航天器执行任务,相比一般终端滑模控制器,本文设计的控制器不仅能使系统状态以更快的速度到达平衡点,且不需要在线对执行器故障信息进行检测和分离。基于Lyapunov方法证明本文设计的控制器能保证闭环系统稳定,且能有效地抑制外部干扰、控制受限和执行器故障等约束。最后对提出的控制算法进行了数值仿真,其结果表明了该控制器的有效性。
胡庆雷 , 姜博严 , 石忠 . 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014 , 35(1) : 249 -258 . DOI: 10.7527/S1000-6893.2013.0298
An exponent nonsingular fast terminal sliding mode (ENFTSM) control law is investigated in this paper for a rigid spacecraft with redundant thrusters in which thruster faults, and control input saturation as well as external disturbances have to be explicitly considered simultaneously. More specifically, in this proposed control scheme, fast convergence of spacecraft attitude tracking is achieved and faster reaching time can be guaranteed in comparison with the terminal sliding mode. When thruster fault occurs, the control parameters are adjusted dynamically in such a fashion that no fault detection and isolation mechanism is required in advance, and only the remaining active thrusters are assumed to be able to produce a combined force sufficient to allow the spacecraft to perform the given operations within the saturation magnitude. Lyapunov stability analysis shows that the resulting closed-loop system is stable it can withstand the effect of external disturbances, control input saturation and even faults by appropriately choosing the design parameters. The attitude tracking performance using the controller is evaluated through a numerical example.
[1] Hu Q L. Robust Adaptive attitude tracking control with L2-gain performance and vibration reduction of an orbiting flexible spacecraft[J]. Journal of Dynamic Systems, Measurement and Control, 2011, 133(1): 011009.
[2] Hu Q L, Ma G F, Xie L H. Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity[J]. Automatica, 2008, 44(2): 552-559.
[3] Hou Q, Cheng Y H, Lu N Y, et al. Study on FDD and FTC of satellite attitude control system based on the effectiveness factor[C]//The 2nd International Symposium on Systems and Control in Aerospace and Astronautics, 2008: 1096-1101.
[4] Jiang Y, Hu Q L, Ma G F. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures[J]. ISA Transactions, 2010, 49(1): 57-69.
[5] Hu Q L, Zhang A H, Li B. Adaptive variable structure fault tolerant control of rigid spacecraft under thruster faults[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 909-918.(in Chinese) 胡庆雷, 张爱华, 李波. 推力器故障的刚体航天器器自适应变结构容错控制[J]. 航空学报, 2013, 34(4): 909-918.
[6] Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 957-963.
[7] Huo X, Hu Q L, Xiao B, et al. Variable-structure fault-tolerant attitude control for flexible satellite with input saturation[J]. Control Theory & Applications, 2011, 28(9): 1063-1068. (in Chinese) 霍星, 胡庆雷, 肖冰, 等. 带有饱和受限的挠性卫星变结构姿态容错控制[J]. 控制理论与应用, 2011, 28(9): 1063-1068.
[8] Hu Q L. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits[J]. Nonlinear Dynamics, 2009, 55(4): 301-321.
[9] Lu K F, Xia Y Q, Fu M Y. Controller design for rigid spacecraft attitude tracking with actuator saturation[J]. Information Sciences, 2013, 220: 343-366.
[10] Ding S H, Li S H, Li Q. Stability analysis for a second-order continuous finite-time control system subject to a disturbance[J]. Journal of Control Theory and Applications, 2009, 7(3): 271-276.
[11] Jin E D, Sun Z W. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control[J]. Aerospace Science and Technology, 2008, 12(4): 324-330.
[12] Hu Q L, Huo X, Xiao B, et al. Robust finite-time control for spacecraft attitude stabilization under actuator fault[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, 226(4): 416-428.
[13] Zou A M, Kumar K D, Hou Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(4): 950-963.
[14] Hu Q L, Li B, Zhang A H. Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment[J]. Nonlinear Dynamics, 2013, 73(1-2): 53-71.
[15] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469.
[16] Yu S H, Yu X H, Man Z H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems[C]//Proceedings of the 39th IEEE Conference on Decision and Control, 2000, 3: 2198-2203.
[17] Feng Y, Yu X H, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(9): 2159-2167.
[18] Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2010, 21(16): 1865-1879.
[19] Li H, Dou L H, Su Z. Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator[J]. International Journal of Systems Science, 2013, 44(3): 401-415.
[20] Abramowitz M, Stegun I A. Handbook of mathematical functions: with formulas, graphs, and mathematical tables[M]. New York: Dover Publications, 1972.
[21] Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964.
/
〈 | 〉 |