一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法
收稿日期: 2012-10-30
修回日期: 2013-01-04
网络出版日期: 2013-05-23
基金资助
国家自然科学基金(11172070);复旦大学研究生创新基金(EYH2126022)
An Efficient Numerical Method for Coupling the RANS Equations with Spalart-Allmaras Turbulence Model Equation
Received date: 2012-10-30
Revised date: 2013-01-04
Online published: 2013-05-23
Supported by
National Natural Science Foundation of China (11172070);Graduates' Innovation Foundation of Fudan University (EYH2126022)
在工程实际中,一方程湍流模型或两方程湍流模型的求解通常和雷诺平均Navier-Stockes(RANS)方程的求解是解耦的,也称之为松耦合求解。在松耦合求解过程中,RANS方程和湍流模型方程通常采用不同的数值方法异步求解。这种求解方式很容易产生因两者计算精度不一致而引起的额外数值耗散。为了消除这种耗散,将RANS方程与Spalart-Allmaras模型方程耦合成一个系统方程——强耦合RANS方程,并发展了一种用于求解该系统方程的高效强耦合算法,其中对流项离散采用了Roe格式,时间项的离散采用了隐式LU-SGS(Lower-Upper Symmetric Gauss-Seidel)格式,为了提高计算效率,采用了三层V循环多重网格方法。通过翼型/机翼和振荡翼型/机翼等算例验证了本文发展的强耦合算法不仅具有较好的收敛性,而且计算精度明显优于松耦合算法,特别对于阻力的预测,强耦合算法更加准确。
关键词: Spalart-Allmaras湍流模型; RANS方程; 强耦合算法; 多重网格方法; 双时间方法
杨小权 , 杨爱明 , 孙刚 . 一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法[J]. 航空学报, 2013 , 34(9) : 2007 -2018 . DOI: 10.7527/S1000-6893.2013.0056
In engineering practice, the system of the one- or two-equation turbulence model together with Reynolds-averaged Navier-Stokes (RANS) equations is decoupled during its solving, which is known as loosely coupled solving. In the process, RANS equations and turbulence model equations are commonly solved separately with different numerical methods, which may easily incur additional numerical dissipation due to inconsistent calculation accuracy. In order to eliminate this dissipation, RANS equations and Spalart-Allmaras model equation are hereby coupled into one strongly coupled system of equations, and an efficient method is developed for its solution. The convective terms are discrete by the Roe scheme, and the time derivative terms are discrete by the LU-SGS (Lower-Upper Symmetric-Gauss-Seidel) method. In order to accelerate the convergence, a three level V-cycle multigrid algorithm is used. Through numerical experiments of the airfoil/wing and oscillating airfoil/wing, the convergence and accuracy of this algorithm are verified, and results show that its accuracy is significantly better than the loosely coupled algorithm, especially in the prediction of drag force.
[1] Kunz R F, Lakshminarayana B. Stability of explicit Navier-Stokes procedures using k-ε and k-ω algebraic Reynolds stress turbulence models. Journal of Computational Physics, 1992, 103(1): 141-159.
[2] Liu F, Zhang X. A strongly coupled time-marching method for solving the Navier-Stokes and k-ω turbulence model equations with multigrid. Journal of Computational Physics, 1996, 128(2): 289-300.
[3] Barakos G, Drikakis D. Implicit unfactored implementation of two-equation turbulence models in compressible Navier-Stokes methods. International Journal for Numerical Methods in Fluids, 1998, 28(1): 73-94.
[4] Lee S, Choi D W. On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations. International Journal for Numerical Methods in Fluids, 2006, 50(2): 165-197.
[5] Yang J, Hsieh T, Wang C. Implicit weighted essentially nonoscillatory schemes with antidiffusive flux compressible viscous flows. AIAA Journal, 2009, 47(2): 1435-1444.
[6] Huang J, Lin H, Yang J. Implicit preconditioned WENO scheme for steady viscous flow computation. Journal of Computational Physics, 2009, 228(2): 420-438.
[7] Jahangirian A, Hadidoolabi M. An implicit solution of the unsteady Navier-Stokes equations on unstructured moving grids. ICAS-24, 2004.
[8] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1994, 1(1): 5-21.
[9] Yoon S, Jameson A. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations. NASA-CR-179524, 1986.
[10] Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics, 1981, 43(2): 357-372.
[11] Harten A, Hyman J M. Self adjusting grid methods for one-dimensional hyperbolic conservation laws. Journal of Computational Physics, 1983, 50(2): 235-269.
[12] van Leer B. Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. Journal of Computational Physics, 1979, 32(1): 101-136.
[13] Yang A M, Yang X Q. Multigrid acceleration and chimera technique for viscous flow past a hovering rotor. Journal of Aircraft, 2011, 48(2): 713-715.
[14] Yang X Q, Yang A M, Weng P F. The mltilgrid method in Euler equation computation about a helicopter rotor in hover. Acta Aerodynamica Sinica, 2009, 27(5): 608-615. (in Chinese) 杨小权, 杨爱明, 翁培锋. 悬停旋翼无黏流场数值模拟中的多重网格方法. 空气动力学学报, 2009, 27(5): 608-615.
[15] Cook P H, McDonald M A, Firmin M C P. Aerofoil RAE 2822 pressure distributions and boundary layer and wake measurements. AGARD-AR-138, 1979.
[16] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6-Wing at transonic mach numbers, experimental data base for computer program assessment. AR-138-B1, 1979.
[17] Landon R H. NACA0012 oscillatory and transient pitching. AGARD-R-702, 1982.
[18] Zwaan R J. Lann wing pitching oscillations, compendium of unsteady aerodynamic measurements. AGARD-R-702, 1985.
[19] Luo H, Joseph D, Rainald L. An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Journal of Computational Physics, 2001, 30(2): 137-159.
[20] Yang X Q, Cheng S K, Yang A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797. (in Chinese) 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟. 航空学报, 2013, 34(4): 787-797.
/
〈 | 〉 |