综述

可应用于民机空气动力设计中的数值优化方法

  • Sergey PEIGIN ,
  • 朱自强 ,
  • Boris EPSTEIN
展开
  • 1. Optimenga LTD, Tel-Aviv 71720, Israel;
    2. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    3. Academic College of Tel-Aviv Yaffo, Tel-Aviv 64044, Israel
朱自强 男,教授,博士生导师。主要研究方向:计算流体力学、飞行器气动设计。Tel:010-82314186 E-mail:zhuzq@buaa.edu.cn

收稿日期: 2013-05-13

  修回日期: 2013-05-18

  网络出版日期: 2013-05-17

Applicable Numerical Optimization Methods for Aerodynamic Design of Civil Aircraft

  • Sergey PEIGIN ,
  • ZHU Ziqiang ,
  • Boris EPSTEIN
Expand
  • 1. Optimenga LTD, Tel-Aviv 71720, Israel;
    2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    3. Academic College of Tel-Aviv Yaffo, Tel-Aviv 64044, Israel

Received date: 2013-05-13

  Revised date: 2013-05-18

  Online published: 2013-05-17

摘要

目前民机成功设计的一个关键要素即在设计中有效地引入计算流体力学(CFD)的模拟方法和软件,特别是具有设计能力的方法和工具。本文概要地叙述了反设计、基于CFD低可信度和高可信度模型等数值优化方法的发展和应用于民机设计的历史和现状;简单地介绍了即将举行的空气动力优化设计计算系列研讨会;重点讨论了对可应用于民机设计的基于Navier-Stokes方程解算器的OPTIMAS的数值优化方法的要求及其构造方法,并以翼身组合体整流外形和翼身融合体(BWB)外形的算例表明其有效性,说明OPTIMAS可以成为民机日常设计的方法和工具之一。

本文引用格式

Sergey PEIGIN , 朱自强 , Boris EPSTEIN . 可应用于民机空气动力设计中的数值优化方法[J]. 航空学报, 2014 , 35(1) : 58 -69 . DOI: 10.7527/S1000-6893.2013.0249

Abstract

Now one of the most important factors of a successful civil aircraft design is applying computational fluid dynamic (CFD) numerical methods and software, especially the design tools, to the design. In the present paper, historic development and application of the inverse design concept and numerical optimization methods based on low and high fidelity models are described briefly. The International Aerodynamic Optimization Design Computation Workshop, which will be held soon, is introduced. Optimization methods of design based on the Navier-Stokes solver are discussed in detail, including the requirements to them and their construction issues. Numerical examples of OPTIMAS applying to a wing-body fairing shape design and a blended wing body (BWB) shape design have shown the efficiency of OPTIMAS for use as a daily design tool for civil transport design.

参考文献

[1] Sloff J W. A survey of computational methods for subsonic and transonic design[C]//Proceedings of the First International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES I), 1984: 1-68.

[2] Sobieczky H. The new concept of high-speed aircraft design[M]. Qian Y J translated. Beijing: National Defense Industry Press, 2001. (in Chinese) 索别斯基. 高速运输机设计的新概念[M]. 钱翼稷译. 北京: 国防工业出版社, 2001.

[3] Dulikravich G S. Aerodynamic shape design and optimization: status and trends[J]. Journal of Aircraft, 1992, 29(6): 1020-1026.

[4] Proceedings of the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES Ⅲ)[C]//Dulikravich G S ed. Washington: 1991.

[5] AGARD. Computational methods for aerodynamic design(inverse) and optimization, AGARD CP-463[R]. 1969.

[6] Lighthill M J. A new method of two dimensional aerodynamic design, ARC RM 2112[R]. 1945.

[7] Hicks R M, Murman E M, Vanderplaats G N. An assessment of airfoil design by numerical optimization, NASA-TMX-3092[R]. 1974.

[8] Hicks R M, Henne P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412.

[9] Henne P A. An inverse transonic wing design method, AIAA-1980-0330[R]. Reston: AIAA, 1980.

[10] Campbell R A, Smith L A. A hybrid algorithm for transonic airfoil and wing design, AIAA-1987-2552[R]. Reston: AIAA, 1987.

[11] Yu N J, Campbell R A. Transonic airfoil and wing design using Navier-Stokes codes, AIAA-1992-2651[R]. Reston: AIAA, 1992.

[12] Johnson F T, Tinoco E N, Yu N J. Thirty years of development and application of CFD at Boeing commercial airplanes, AIAA-2003-3439[R]. Reston: AIAA, 2003.

[13] Zhu Z Q, Chen Y C, Wang X L, et al. The aerodynamic design of the modern airplane[M]. Beijing: National Defense Industry Press, 2011.(in Chinese) 朱自强, 陈迎春, 王晓璐, 等. 现代飞机的空气动力设计[M]. 北京: 国防工业出版社, 2011.

[14] Goldhammer M I, Steinle F M. Design and validation of advanced transonic wind using CFD and very high Reynolds number wind tunnel testing[C]//ICAS Congress, 1990: 1028-1042.

[15] Campbell R L. An approach to constrained aerodynamic design with application to airfoils[R]. NASA TP-3260, 1992.

[16] Smith M F. User-friendly CFD: application to TRANAIR for analysis of transport aircraft, AIAA-1998-5574[R]. Reston: AIAA, 1998.

[17] Huffman W P, Melvin R G, Young D P, et al. Practical design and optimization in computational fluid dynamics, AIAA-1993-3111[R]. Reston: AIAA, 1993.

[18] Smith M F. TRANAIR packaging for ease-of-use in wing design, AIAA-1998-5575[R]. Reston: AIAA, 1998.

[19] Jou W F, Huffman W P, Young D P, et al. Practical considerations in aerodynamic design optimization, AIAA-1995-1730[R]. Reston: AIAA, 1995.

[20] Melvin R G, Huffman W P, Young D P, et al. Recent progress in aerodynamic design optimization[J]. International Journal of Numerical Methods in Fluids, 1999, 30(2): 205-216.

[21] Pironneau O. Optimal shape design for elliptic systems[M]. New York: Springer Verlag, 1984.

[22] Mohammadi B, Pironneau O. Applied shape optimization for fluids[M]. Oxford: Oxford University Press, 2001.

[23] Jameson A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260.

[24] Jameson A. Computational aerodynamics aircraft design[J]. Science, 1989, 245(4916): 361-371.

[25] Jameson A. Optimum aerodynamic design via boundary control[C]//AGARD VKI Lecture Series, Optimum Design Methods in Aerodynamics, 1994.

[26] Jameson A, Alonso J J. Automatic aerodynamic optimization on distributed memory architectures, AIAA-1996-0409[R]. Reston: AIAA, 1996.

[27] Reuther J, Alonso J J, Vassberg J C, et al. An efficient multiblock method for aerodynamic analysis and design on distributed memory systems, AIAA-1997-1893[R]. Reston: AIAA, 1997.

[28] Jameson A, Pierce N A, Martinelli L. Optimum aerodynamic design using the Navier-Stokes equations, AIAA-1997-0101[R]. Reston: AIAA, 1997.

[29] Martins L. A coupled-adjoint method for high-fidelity aero-structural optimization. Stanford: Stanford University, 2002.

[30] Jameson A, Leoviriyakit K, Shankaran S. Multipoint aero-structural optimization of wings including planform variables, AIAA-2007-0764[R]. Reston: AIAA, 2007.

[31] Jameson A, Vassberg J C. Computational fluid dynamics for aerodynamic design: its current and future impact, AIAA-2001-0538[R]. Reston: AIAA, 2001.

[32] Baysal O, Eleshaky M E. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics[J]. AIAA Journal, 1992, 30(3): 718-725.

[33] Ta'asan S, Kuruvila G, Salas M D. Aerodynamic design and optimization in one shot, AIAA-1992-0025[R]. Reston: AIAA, 1992.

[34] Shankaran S, Jameson A, Martinelli L. Continuous adjoint method for unstructured grid[J]. AIAA Journal, 2008, 46(5): 226-239.

[35] Desai M, Ito K. Optimal controls for Navier-Stokes equation[J]. SIAM Journal of Control Optimum, 1994, 32(5): 1428-1446.

[36] Elliot J, Peraire J. 3-D aerodynamic optimization on unstructured meshes with viscous effects, AIAA-1997-1849[R]. Reston: AIAA, 1997.

[37] Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivatives[J]. Computer Journal, 1964, 7(2): 155-162.

[38] Nelder J A, Mead R. A simplex method for function minimization[J]. Computer Journal, 1965, 7(4): 308-313.

[39] Sturdza P. Extensive supersonic natural laminar flow on the Aerion business jet, AIAA-2007-0685[R]. Reston: AIAA, 2007.

[40] Aly S, Ogot M, Petz R. Stochastic approach to optimal aerodynamic shape design[J]. Journal of Aircraft, 1996, 33(5): 956-961.

[41] Holland J H. Adaption in natural and artificial systems[M]. Michigan: The University Michigan Press, 1975.

[42] Goldberg D E. Genetic algorithm in search, optimization and machine learning[M]. New Jersey: Addison-Wesley, 1989.

[43] Michalewicz Z. Genetic algorithm + data structure = evolution programs[M]. Berlin: Springer Verlag, 1992.

[44] Liu Y, Kang L S, Chen Y P. The numerical parallel algorithm (genetic algorithm)[M]. Beijing: Science Press, 1995.(in Chinese) 刘勇, 康立山, 陈毓屏. 非数值并行算法(遗传算法)[M]. 北京: 科学出版社, 1995.

[45] Chen G L, Wang X F, Zhuang Z Q. Genetic algorithm and application[M]. Beijing: Posts and Telecom Press, 2001.(in Chinese) 陈国良, 王煦法, 庄镇泉. 遗传算法及其应用[M]. 北京: 人民邮电出版社, 2001.

[46] Vicini A, Quaglarella D. Inverse and direct airfoil design using a multiobjective genetic algorithm[J]. AIAA Journal, 1997, 35(9): 1499-1505.

[47] Obayashi S, Yamaguchi Y, Nakamura T. Multiobjective genetic algorithm for multidisciplinary design of transonic wing planform[J]. Journal of Aircraft, 1997, 34(5): 690-693.

[48] Grignon P M, Woodziak J R, Fadel G M. Bi-objective optimization of components packing using a genetic algorithm, AIAA-1996-4022. Reston: AIAA, 1996.

[49] Doorly D J, Peiro J, Desterle P. Optimization of aerodynamic and coupled aerodynamic-structured design using parallel genetic algorithm, AIAA-1996-4027[R]. Reston: AIAA, 1996.

[50] Takenaka K, Obayashi S, Nakahaski K, et al. The application of MDO technologies to the design of a high performance small jet aircraft-lesson learned and some practical concerns, AIAA-2005-0497[R]. Reston: AIAA, 2005.

[51] Sasaki D, Obayashi S, Nakahaski K. Navier-Stokes optimization of supersonic wings with four objectives using evolutionary algorithm[J]. Journal of Aircraft, 2002, 39(4): 621-629.

[52] Takenka K, Hatanaka K, Yamazaki W, et al. Multidisciplinary design exploration for a winglet[J]. Journal of Aircraft, 2008, 45(5): 1601-1611.

[53] Peigin S, Epstein B. Robust handling of non-linear constraints for GA optimization of aerodynamic shapes[J]. International Journal of Numerical Methods in Fluids, 2004, 45(11): 1339-1362.

[54] Epstein B, Peigin S. Robust hybrid approach to multiobjective constrainted optimization in aerodynamics[J]. AIAA Journal, 2004, 42(8): 1572-1581.

[55] Epstein B, Peigin S. Constrainted aerodynamic optimization of 3D wings driven by Navier-Strokes computations[J]. AIAA Journal, 2005, 43(9): 1946-1957.

[56] Peigin S, Epstein B. Robust drag minimization of aerodynamic wings in engineering environment[J]. Journal of Aircraft, 2006, 43(4): 1195-1204.

[57] Peigin S, Epstein B. Embedded parallelization approach for optimization in aerodynamic design[J]. The Journal of Supercomputin, 2004, 29(3): 243-263.

[58] Epstein B, Peigin S. Optimization of 3D wings based on Navier-Strokes solutions and genetic algorithms[J]. The International Journal of Computational Fluid Dynamics, 2006, 20(2): 75-92.

[59] Proceedings of the first AIAA CFD drag prediction workshop[EB/OL].[2013-02-20]. http://ad-www.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/index/html.

[60] Rumsay C L, Long M, Stuever R A, et al. Summary of the first AIAA CFD high lift prediction workshop, AIAA-2011-0939[R]. Reston: AIAA, 2011.

[61] Vassberg J C, Jameson A, Peigin S, et al. A pilot project in preparation of an aerodynamic optimization workshop with lessons learned, AIAA-2008-6226[R]. Reston: AIAA, 2008.

[62] Epstein B, Jameson A, Peigin S, et al. Comparative study of a 3D wing drag minimization by different optimization techniques, AIAA-2008-0326[R]. Reston: AIAA, 2008.

[63] Le Doux S T, Herling W W, Fatta G J, et al. MDOPT-a multidicisplinary design optimization system using high order analysis codes, AIAA-2004-4567[R]. Reston: AIAA, 2004.

[64] Audet C, Dennis J, Moore D, et al. Surrogate-method-based method for constrained optimization, AIAA-2000-4891[R]. Reston: AIAA, 2000.

[65] Vatsa V N, Hammomd D P. Viscous flow computations for complex geometrics on parallel computers[C]//4th NASA Symposium on Large-scale Analysis and Design on High Performance Computers and Workstations, 1997.

[66] Epstein B, Rubin T, Seror S. Accurate multiblock Navier-Strokes solver for complex aerodynamic configurations[J]. AIAA Journal, 2003, 41(4): 582-594.

[67] Peigin S, Epstein B, Rubin T, et al. Parallel large scale high accuracy Navier-Stokes computations on distributed memory clusters[J]. Journal of Supercomputing, 2004, 27(1): 49-68.

[68] Seror S, Rubin T, Peigin S, et al. Implementation and validation of the Spalart-Allmaras turbulence model for a parallel CFD code[J]. Journal of Aircraft, 2005, 42(1): 179-185.

[69] Buning P G, Jespersen D C, Pulliam T H, et al. Overflow user's manual, version 1.81. Washington: NASA Langley Research Center, 1999.

[70] Vassberg J C, DeHaan M A, Sclafani A J. Grid generation requirements for accurate drag predictions based on OVERFLOW calculations, AIAA-2003-4124[R]. Reston: AIAA, 2003.

[71] Epstein B, Avorbuch A, Yavneh I. An accurate ENO driven multigrid method applied to 3D turbulent transonic flows[J]. Journal of Computation Physics, 2001, 168(2): 316-338.

[72] Sefrioui M, Periaux J, Ganascica J G. Fast convergence thanks to diversity[C]//Proceedings of 5th Annual Conference on Evolutionary Programming, 1996: 313-321.

[73] Epstein B, Peigin S. Efficient approach for multipoint aerodynamic wing design of business jet aircraft[J]. AIAA Journal, 2007, 45(11): 2612-2621.

[74] Peigin S, Epstein B. Aerodynamic optimization of essentially three-dimensional shapes for wing-body fairing[J]. AIAA Journal, 2008, 46(7): 1814-1825.

[75] Peigin S, Epstein B. Computational fluid dynamics driven optimization of blended wing-body aircraft[J]. AIAA Journal, 2006, 44(11): 2736-2745.

[76] Smith H. College of Aeronautics blended wing body development programme, ICAS2000-1.1.4[R]. 2000.

[77] Qin N, Vavalle A, Le Moigne A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progess in Aerospace Sciences, 2004, 40(6): 321-343.

文章导航

/