材料工程与机械制造

磁致伸缩作动器的参数振动问题

  • 李琳 ,
  • 薛铮 ,
  • 景旭贞
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
    2. 中国空间技术研究院, 北京 100094
李琳 女, 博士, 教授, 博士生导师。主要研究方向: 航空发动机结构强度振动。 Tel: 010-82313998 E-mail: feililin@hotmail.com;薛铮 男, 博士研究生。主要研究方向: 航空发动机结构强度振动。 E-mail: xuezhengno.1@163.com;景旭贞 女, 硕士,助理工程师。主要研究方向: 航空发动机结构强度振动。 E-mail: jingxuzhen@sohu.com

收稿日期: 2013-01-15

  修回日期: 2013-05-02

  网络出版日期: 2013-05-09

基金资助

国家自然科学基金(91016006)

Parametric Vibration in Magnetostrictive Actuator

  • LI Lin ,
  • XUE Zheng ,
  • JING Xuzhen
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. China Academy of Space Technology, Beijing 100094, China

Received date: 2013-01-15

  Revised date: 2013-05-02

  Online published: 2013-05-09

Supported by

National Natural Science Foundation of China (91016006)

摘要

根据超磁致伸缩材料的弹性模量E随环境磁场与应力状态改变的特性,建立了考虑ΔE效应的磁致伸缩作动器动力学模型。不同于一般的参数振动和强迫振动,该模型的特点是同时存在参数激励和外激励。利用摄动法对该模型求解与分析,获得了作动器的参数振动频谱特性和共振频率。通过稳定性分析并考虑外激励的作用分析了此类结构在谐波与次谐波共振频率激励时的危险性,其中驱动电流频率为1/2固有频率时需考虑次谐波共振幅值是否会超出安全范围。所得结论可为磁致伸缩作动器及其智能结构的使用和设计提供参考。

本文引用格式

李琳 , 薛铮 , 景旭贞 . 磁致伸缩作动器的参数振动问题[J]. 航空学报, 2013 , 34(10) : 2427 -2434 . DOI: 10.7527/S1000-6893.2013.0250

Abstract

Elastic modulus E of giant magnetostrictive materials changes with themagnetic field and the stress, which is known as the ΔE effect. This paper proposes a dynamic model of magnetostrictive actuator that takes into consideration the ΔE effect. The feature of the model is the existence of both parametric excitation and external excitation, which is different from ordinary parametric vibration or forced vibration. The perturbation method is applied to solve and analyze the model. The spectrum charateristics and resonance frequency of parameter vibration are obtained. The danger of such structures under excitation of sub-harmonic resonance is analyzed by means of stability analysis in combination with an analysis based on the stability theorem considering external excitation. The amplitude of sub-harmonic resonance is considered when the frequency of the driving current is equal to 1/2 inherent frequency of the actuator. The conclusions obtained can be used as reference in the design of giant magnetostrictive actuators and smart structures with magnetostrictive materials.

参考文献

[1] Clark A E. Ferromagnetic materials. Amsterdam: North Holland Publishing Company, 1980: 531-587.

[2] Zhang Y Y, Li L. Research of the electro-magneto-elastic integral dynamic characteristics of the magnetostrictive actuator. Proceedings of SPIE, 2005, 5649: 454-462.

[3] Gu Z Q, Zhu J C, Peng F J, et al. Study on the application of magnetostrictive actuator for active vibration control. Journal of Vibration Engineering, 1998, 11(4): 381-388. (in Chinese) 顾仲权, 朱金才, 彭福军, 等. 磁致伸缩材料作动器在振动主动控制中的应用研究. 振动工程学报, 1998, 11(4): 381-388.

[4] Zhang T L, Jiang C B, Zhang H, et al. Giant magnetostrictive actuators for active vibration control. Smart Materials and Structures, 2004, 13(3): 473-477.

[5] Nakamura Y, Nakayama M, Masuda K, et al. Development of 6-DOF microvibration control system using giant magnetostrictive actuator. Proceedings of SPIE, 1999, 3671: 229-240.

[6] Moon S J, Lim C W, Kim B H, et al. Structural vibration control using linear magnetostrictive actuators. Journal of Sound and Vibration, 2007, 302(4): 875-891.

[7] Smith R C, Dapino M J, Seelecke S. Free energy model for hysteresis in magnetostrictive transducers. Journal of Applied Physics, 2003, 93(1): 458-466.

[8] M J Dapino, Smith R C, Flatus A B. A model for the ΔE effect in model in magnetostrictive transducers. Proceedings of SPIE, 2000, 3985:174-185.

[9] Tan X B, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators. Automatica, 2004, 40(9): 1469-1480.

[10] Bottauscio O, Roccato P E, Zucca M. Modeling the dynamic behavior of magnetostrictive actuators. IEEE Transactions on Magnetics, 2010, 46(8): 3022-3028.

[11] Olabi A G. Design of a magnetostrictive (MS) actuator. Sensors and Actuators, 2008, 144(1): 161-175.

[12] Sarawate N N, Dapino M J. A dynamic actuation model for magnetostrictive materials. Smart Materials and Structures, 2008, 17(6): 065013.

[13] Zheng X J, Liu X E. A nonlinear constitutive model for Terfenol-D rods. Journal of Applied Physics, 2005, 97(5): 053901.

[14] Bolotin V V. The dynamic stability of elastic systems. San Francisco: Holden-day, 1964:10-51.

[15] Turhan Ö. A generalized Bolotins method for stability limit determination of parametrically excited systerms. Journal of Sound and Vibration, 1998, 216(5): 851-863.

文章导航

/