基于气动特性辨识的飞行器抗饱和自适应控制
收稿日期: 2013-01-11
修回日期: 2013-04-13
网络出版日期: 2013-05-07
基金资助
国家自然科学基金(61203354)
Anti-windup Adaptive Control of Aircraft Based on Online Identification of Aerodynamic Characteristics
Received date: 2013-01-11
Revised date: 2013-04-13
Online published: 2013-05-07
针对无人机含有未知气动参数时的大机动飞行控制问题,设计了基于在线气动参数辨识的自适应非线性模型预测控制(ANMPC)的飞行控制器。首先,根据无人机动力学模型设计出基于反馈线性化模型的非线性模型预测控制(NMPC)的飞行控制器,通过在线求解有约束的最优化问题,确保大机动飞行时系统状态及控制输入满足约束条件,使控制系统具备抗饱和性能。然后,将无人机动力学模型中的未知气动参数转换为待辨识参数矩阵,采用基于迭代扩展卡尔曼滤波(IEKF)与渐消记忆最小二乘(RLS)的气动特性辨识两步方法,实时辨识无人机气动参数,更新非线性模型预测控制律所用模型,消除模型误差,增强非线性模型预测控制器的鲁棒性。最后,对指令姿态角跟踪进行了仿真验证,仿真结果表明:在考虑外界未知气动扰动情况下,控制器满足设计要求,并具有较强的鲁棒性。
王超 , 张胜修 , 郑建飞 , 张超 . 基于气动特性辨识的飞行器抗饱和自适应控制[J]. 航空学报, 2013 , 34(12) : 2645 -2657 . DOI: 10.7527/S1000-6893.2013.0221
A high maneuver flight controller using online identification of aerodynamic parameters based adaptive nonlinear model predictive control (ANMPC) is proposed for an unmanned aerial vehicle with unknown aerodynamic parameters. Firstly, an nonlinear model predictive control (NMPC) controller is designed in accordance with the feedback-linearized unmanned aerial vehicle dynamical model. The systematic handling of input and state constraint violations in a high maneuvering flight is achieved by solving an online constrained optimization problem. In this way, accomplishment of anti-windup is guaranteed. Secondly, the unknown parameter matrixes, which are formed from the unknown aerodynamic parameters in the unmanned aerial vehicle dynamic model, are identified in real time by means of a two-step method which combines the iterated extended Kalman filter (IEKF) and the recursive least square (RLS) estimation with forgetting. In the meantime, the unmanned aerial vehicle dynamical model is updated with identified aerodynamic parameters to compensate for model mismatch. In this way, robust performance of the NMPC controller is improved with updated model information. Finally, simulation results for attitude command tracking in the presence of perturbed aerodynamic parameters demonstrate that all perfor-mance requirements are satisfied and the robustness is successfully achieved by the designed controller.
[1] Reiner J, Balas G J, Garrard W L. Flight control design using robust dynamic inversion and time-scale separation. Automatica, 1996, 32(11): 1493-1504.
[2] Levant A. Homogeneity approach to high-order sliding mode design. Automatica, 2005, 41(5): 823-830.
[3] Ren W, Atkins E. Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation. Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: 3606-3616.
[4] Fang W, Jiang C S. Nonlinear predictive control of an aerospace vehicle based on adaptive fuzzy systems. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 988-994. (in Chinese) 方炜, 姜长生. 基于自适应模糊系统的空天飞行器非线性预测控制. 航空学报, 2008, 29(4): 988-994.
[5] Mehra R K, Gopinathan M, Sistu P B. Robust nonlinear model predictive control for agile interceptor missiles. AIAA-1998-4121, 1998.
[6] Akpan V A, Hassapis G D. Nonlinear model identification and adaptive model predictive control using neural networks. ISA Transactions, 2011, 50(2): 177-194.
[7] Shin J, Jin Kim H, Park S, et al. Model predictive flight control using adaptive support vector regression. Neurocomputing, 2010, 73(4): 1031-1037.
[8] Stevens B L, Lewis F L. Aircraft control and simulation. 2ed. New York: John Wiley & Sons, 2003: 110-122.
[9] Cao L J, Zhang S X, Liu Y N, et al. Flight controller design using adaptive parameter approximation block backstepping. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2259-2267. (in Chinese) 曹立佳, 张胜修, 刘毅男, 等. 带有自适应参数近似的块控反步飞行控制器设计. 航空学报, 2011, 32(12): 2259-2267.
[10] Shin J Y, Belcastro C, Khong T. Closed-loop evaluation of an integrated failure identification and fault tolerant control system for a transport aircraft. AIAA Guidance, Navigation and Control Conference, 2006.
[11] Wang G D, Cui E J, Liu Z Q. Closed loop identification of aerodynamic parameter using two-step method. Flight Dynamics, 2010, 28(2): 16-19. (in Chinese) 王贵东, 崔尔杰, 刘子强. 闭环气动参数辨识的两步方法. 飞行力学, 2010, 28(2): 16-19.
[12] Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method. IEEE Transactions on Automatic Control, 1993, 38(2): 294-297.
[13] Bellaire R L, Kamen E W, Zabin S M. New nonlinear iterated filter with applications to target tracking. SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, 1995: 240-251.
[14] Bemporad A, Filippi C. Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming. Journal of Optimization Theory and Applications, 2003, 117(1): 9-38.
[15] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networks controller. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 675-682.
/
〈 | 〉 |