导弹大迎角下非线性诱导滚转力矩数值研究
收稿日期: 2013-02-08
修回日期: 2013-04-02
网络出版日期: 2013-05-03
基金资助
国家自然科学基金(11102098,10932005)
Numerical Study of Induced Nonlinear Rolling Moment of Finned Missile at High Angles of Attack
Received date: 2013-02-08
Revised date: 2013-04-02
Online published: 2013-05-03
Supported by
National Natural Science Foundation of China (11102098, 10932005)
采用计算流体力学(CFD)数值模拟方法,研究战术导弹大迎角状态下涡破裂导致滚转力矩随迎角非线性增长引起舵面控制能力不足的现象。首先通过标准模型的数值分析,验证了所采用的CFD方法具有三角翼前缘涡破裂现象的捕捉能力;然后采用雷诺平均Navier-Stokes方程对某“++”字正常布局导弹构型(含弹翼、弹身、尾舵和整流罩等)进行了数值模拟,结果显示亚声速状态下滚转力矩在迎角大于20°时出现非线性增长,导致全动尾舵的滚转控制能力不足。通过分解各部件对滚转力矩的贡献,并分析流场结构,探明了该现象发生的流动机理,其主要原因是:随着迎角的增长,弹体迎风面的尾舵前缘涡首先发生破裂,导致其平衡诱导滚转力矩的作用被削弱。
徐柯哲 , 张宇飞 , 陈海昕 , 李斌 , 刘仙名 , 符松 . 导弹大迎角下非线性诱导滚转力矩数值研究[J]. 航空学报, 2014 , 35(1) : 97 -104 . DOI: 10.7527/S1000-6893.2013.0212
The nonlinear effect of a tactical missile's rolling moment at high angles of attack is numerically studied in the present paper. The capability of the computational fluid dynamics (CFD) scheme in capturing leading edge vortex and its breakdown is verified by a standard delta wing model. A missile in normal configuration in "++" layout, consisting of wings, body, tail rudders and cable fairing, is numerically investigated by solving Reynolds averaged Navier-Stokes equations. The results show that the nonlinear rising of the rolling moment appears after the angle of attack becomes greater than 20°, leading to the inadequacy of the rudder's roll control ability. The mechanism of this phenomenon is obtained through the decomposition of the contributions of each component to the rolling moment as well as an analysis on the flow structure. With the increase in the angles of attack, the leading edge vortex of the tail rudder at the windward side breaks first, which weakens its function of restraining the rolling movement.
[1] Li B, Liu X M, Wang X Z. Study of gap effect on aerodynamic characteristics of tactical missile[J]. Tactical Missile Technology, 2012(2): 17-21.(in Chinese) 李斌, 刘仙名, 王学占. 战术导弹全动舵舵面缝隙效应研究[J]. 战术导弹技术, 2012(2): 17-21.
[2] Peter D. A study of the nonlinear rolling motion of a four-finned missile[J]. Journal of Spacecraft and Rockets, 1969, 7(4): 510-512.
[3] Oberkampf W L. Prediction of roll moments on finned bodies in supersonic flow[J]. Journal of Spacecraft and Rockets, 1975, 12(1): 17-27.
[4] Lesieutre D J, Mendenhall M R, Dillenius M F E. Prediction of induced roll on conventional missiles with cruciform fin sections, AIAA-1988-0529[R]. Reston: AIAA, 1988.
[5] Nielsen J N, Smith C A. Prediction of aerodynamic characteristics of cruciform missiles to high angles of attack, AIAA-1979-0024[R]. Reston: AIAA, 1979.
[6] Liu X M, Fu S. Numerical simulation of compressible separated turbulent flows over inclined slender body[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 572-575.
[7] Meyer J. Effects of the roll angle on cruciform wing-body configurations at high incidences[J]. Journal of Spacecraft and Rockets, 1994, 31(1): 113-122.
[8] Kwak D Y, Rinoie K H K, Kato H. Rolling moment characteristics at high alpha on several planforms of cranked arrow wing configuration, AIAA-2009-3937[R]. Reston: AIAA, 2009.
[9] Li X L, Yang Y. Numerical simulation of the free rolling motion of a delta wing configuration with aileron deflection[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 453-462. (in Chinese) 李喜乐, 杨永. 带副翼偏转的三角翼自由滚转运动数值模拟[J]. 航空学报, 2012, 33(3): 453-462.
[10] Balasubramanian R, Shah V, Arora K, et al. Numerical investigations of lateral characteristics of an air-to-air missile[J]. Journal of Aircraft, 2013, 50(1): 87-95.
[11] Jing D Y, Li J. Numerical research of rolling characteristics on canard missiles by fin trailing edge sweepback angle[J]. Flight Dynamics, 2011, 29(4): 77-79.(in Chinese) 敬代勇, 李剑. 鸭式导弹舵面后缘后掠角对滚转影响数值研究[J]. 飞行力学, 2011, 29(4): 77-79.
[12] Jing D Y, Li J. Numerical research of rolling characteristics on canard missiles by distance between fin and wing[J]. Aeronautical Computing Technique, 2009, 39(4): 55-57.(in Chinese) 敬代勇, 李剑. 鸭式导弹舵翼面间距影响滚转的数值研究[J]. 航空计算技术, 2009, 39(4): 55-57.
[13] Gong A L, Zhou W J, Ji C Q. A finned configuration to reduce rolling moment in oblique flows at supersonic speed and high angle of attack and principle analysis of its action[J]. Journal of Astronautics, 2011, 32(2): 250-254.(in Chinese) 龚安龙, 周伟江, 纪楚群. 减小导弹超声速大迎角斜吹力矩的边条布局及其原理分析[J]. 宇航学报, 2011, 32(2): 250-254.
[14] Zhang Y F, Chen H X, Fu S. Improvement to patched grid technique with high-order conservative remapping method[J]. Journal of Aircraft, 2011, 48(3): 884-893.
[15] Zhang Y F, Chen H X, Fu S. A Karman-vortex generator for passive separation control in a conical diffuser[J]. Science China Physics Mechanics Astronomy, 2012, 55(5): 828-836.
[16] Roe P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43: 357-372.
[17] van Leer B, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 31(1): 101-136.
[18] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[19] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-2016.
[20] Hummel D. Review of the second international vortex flow experiment (VFE-2), AIAA-2008-0377[R]. Reston: AIAA, 2008.
[21] Fritz W, Cummings R M. What was learned from the numerical simulations for the VFE-2, AIAA-2008-0399[R]. Reston: AIAA, 2008.
[22] Furman T, Breitsamtery C. Turbulent and unsteady flow characteristics of delta wing vortex systems, AIAA-2008-0381[R]. Reston: AIAA, 2008.
/
〈 | 〉 |