流体力学与飞行力学

涡轮叶栅内粒子沉积特性的数值研究

  • 周君辉 ,
  • 张靖周
展开
  • 南京航空航天大学 能源与动力学院, 江苏 南京 210016
周君辉 男,博士研究生。主要研究方向:传热与两相流研究。 E-mail:zhoujunhui12345@163.com;张靖周 男,博士,教授,博士生导师。主要研究方向:强化传热、红外隐身等。 Tel:025-84895909 E-mail:zhangjz@nuaa.edu.cn

收稿日期: 2013-01-16

  修回日期: 2013-04-15

  网络出版日期: 2013-04-24

基金资助

国家自然科学基金(51276090);江苏省普通高校研究生科研创新基金(CXLX13_166);中央高校基本科研业务费专项资金

Numerical Investigation on Particle Deposition Characteristic Inside Turbine Cascade

  • ZHOU Junhui ,
  • ZHANG Jingzhou
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-01-16

  Revised date: 2013-04-15

  Online published: 2013-04-24

Supported by

National Natural Science Foundation of China (51276090);Funding of Jiangsu Innovation Program for Graduate Education (CXLX13_166);Fundamental Research Funds for the Central Universities

摘要

为了揭示叶栅内部粒子沉积分布,减少叶栅内粒子沉积,数值研究了二维涡轮叶栅内部固体粒子运动与沉积特性,重点研究了粒径和气流进气角对叶栅内粒子运动与沉积特性的影响。基于EI-Batsh沉积模型,考虑了粒子与壁面碰撞所形成的黏附/反弹和离去机制,编制了相应的粒子沉积计算模块集成在Fluent软件中,并利用相关实验数据对本文计算方法进行了验证。研究结果表明,较大粒径粒子随流性较差,碰撞率较高,黏附率较小,较小粒径粒子则相反;粒子沉积主要分布在叶片压力面中部,气流进气角对粒子沉积分布具有重要影响。

本文引用格式

周君辉 , 张靖周 . 涡轮叶栅内粒子沉积特性的数值研究[J]. 航空学报, 2013 , 34(11) : 2492 -2499 . DOI: 10.7527/S1000-6893.2013.0216

Abstract

In order to reveal the particle deposition distribution inside the cascade, reduce the particle deposition, a numerical investigation is performed on the movement and deposition of dilute particles inside a two-dimensional turbine cascade, focusing on the effects of particle diameter and flow incidence angle on movement and particle deposition characteristics. Based on the EI-Batsh deposition model including particle sticking/rebounding and particle detachment, the investigation links user definition functions with Fluent to predict particle deposition. A comparison of the numerical results with existing experimental data shows that the present numerical model is valid. The research results show that particles with larger particle diameters do not follow air flow easily, thus exhibiting a higher collision rate and lower sticking rate. Particles with smaller particle diameters have the opposite tendency. Particle deposition mainly occurs on the central area of the blade pressure surface. The flow incidence angle has important influence on particle deposition distribution.

参考文献

[1] Brun K,Nored M,Kurz R.Particle transport analysis of sand ingestion in gas turbine engines.Journal of Engineering for Gas Turbines and Power,2012,134(1): 012402-1-8.

[2] Dunn M G,Padova C,Moller J C,et al.Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment.Journal of Engineering for Gas Turbines and Power,1987,109(3): 336-343.

[3] Kim J,Dunn M G,Baran A J,et al.Deposition of volcanic materials in the hot sections of two gas turbine engines.Journal of Engineering for Gas Turbines and Power,1993,115(3): 641-651.

[4] Schneider O,Dohmen H J,Benra F K,et al.Investigations of dust separation in the internal cooling air system of gas turbines.ASME Paper,GT-2003-38293,2003.

[5] Hamed A,Tabakoff W,Wenglarz R.Erosion and deposition in turbomachinery.Journal of Propulsion and Power,2006,22(2): 350-360.

[6] Hamed A A,Tabakoff W,Rivir R B,et al.Turbine blade surface deterioration by erosion.ASME Journal of Turbomachinery,2005,127(3): 445-452.

[7] Zhang Y L,McLaury B S,Shirazi S A.Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code.ASME Journal of Fluids Engineering,2009,131(3): 031303-1-9.

[8] Yi J H,Shi F,Xu Z.A study on motion behaviours of particles through turbine cascade.Journal of Aerospace Power,1995,10(3): 277-279,313.(in Chinese) 伊景海,史峰,徐忠.平面叶栅内固体粒子运动特性的研究.航空动力学报,1995,10(3): 277-279,313.

[9] Rao J,Ge M C,Xu J Z,et al.Experimental investigation on interaction between solid particle and wall surface.Journal of Engineering Thermophysics,2003,24(1): 134-136.(in Chinese) 饶江,葛满初,徐建中,等.固体颗粒与通道壁面相互作用的实验研究.工程热物理学报,2003,24(1): 134-136.

[10] Xi G,Jia H X,Wang X F,et al.Numerical study of the deposition of solid particles in the blade cascade of axial compressors.Journal of Engineering Thermophysics,2003,24(1): 55-58.(in Chinese) 席光,贾会霞,王晓锋,等.轴流压缩机叶栅内固体微粒沉积的数值研究.工程热物理学报,2003,24(1): 55-58.

[11] Brach R,Dunn P F.A mathematical model of the impact and adhesion of microspheres.Aerosol Science and Technology,1992,16(1): 51-64.

[12] El-Batsh H,Haselbacher H.Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades.ASME Paper,GT-2002-30600,2002.

[13] Wammack J E,Crosby J,Fletcher D,et al.Evolution of surface deposits on a high pressure turbine blade,part I: physical characteristics.ASME Journal of Turbomachinery,2008,130(2): 021020-1-8.

[14] Guha A.Transport and deposition of particles in turbulent and laminar flow.Annual Review Fluid Mechanics,2008,40: 311-341.

[15] Ai W G,Fletcher T H.Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane.ASME Journal of Turbomachery,2012,134(4): 041020-1-12.

[16] Arts T,de Rouvroit M L,Rutherford A W.Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade.VKI Technical Note 174,1990.

文章导航

/