Al含量对空心阴极等离子烧结Ti/Ni等原子比TiNiAl合金组织和力学性能的影响
收稿日期: 2012-03-29
修回日期: 2012-05-03
网络出版日期: 2013-03-29
基金资助
常熟市科技发展计划项目(CC200913)
Effect of Al Content on Microstructure and Mechanical Properties of Hollow Cathode Plasma Sintering TiNiAl Alloys with Equal Ti/Ni Atom Ratio
Received date: 2012-03-29
Revised date: 2012-05-03
Online published: 2013-03-29
Supported by
Changshu Science and Technology Development Planning Project (CC200913)
采用空心阴极等离子烧结工艺制备了Ti/Ni等原子比的Ti50-x/2Ni50-x/2Alx(x=0,3,6,9)合金,研究了Al含量对合金微观组织以及力学性能的影响。结果表明:未添加铝的合金微观组织主要由NiTi基体、强化相Ti2Ni、Ni3Ti及孔隙组成;随着Al含量的提高,合金中Ti2Ni(Al)数量不断增多,孔隙数量和孔径不断增加,Ni3Ti(Al)数量不断减少,在Ti45.5Ni45.5Al9中还生成了少量Ni2TiAl相;合金的抗弯强度随Al含量的提高而增加,并在Al含量为6%时达到最大值296.3 MPa;合金的硬度随铝含量的提高而增加,Ti45.5Ni45.5Al9的硬度值为295.6 HV。
刘伯路 , 刘子利 , 刘希琴 , 王怀涛 , 王文静 . Al含量对空心阴极等离子烧结Ti/Ni等原子比TiNiAl合金组织和力学性能的影响[J]. 航空学报, 2013 , 34(3) : 711 -718 . DOI: 10.7527/S1000-6893.2013.0110
Ti50-x/2Ni50-x/2Alx(x=0, 3, 6, 9) intermetallic compounds with equal Ti/Ni atom ratio are fabricated through hollow cathode plasma sintering process, and the effect of Al content on the microstructure and mechanical properties of the alloys is investigated. The results show that the microstructure of an alloy without Al consists chiefly of the NiTi matrix, some strengthening phase Ti2Ni, Ni3Ti and some pores; with the addition and increase of the Al content, the amount of Ti2Ni(Al) increases while that of Ni3Ti(Al) decreases and a small amount of Ni2TiAl is formed in Ti45.5Ni45.5Al9, while the amount of pores and their sizes increase. The flexural strength of the alloys increases with increasing Al content and reaches the maximum of 296.3 MPa when Al content is 6%, and then it starts to decrease as Al content further increases. The hardness of the alloys increases with increasing Al content and the hardness of Ti45.5Ni45.5Al9 reaches 295.6 HV.
[1] Koizumi Y, Ro Y, Nakazawa S, et al. NiTi-base intermetallic alloys strengthened by Al substitution. Materials and Engineering: A, 1997, 223(1-2): 36-41.
[2] Meng L J, Li Y, Zhao X Q, et al. The mechanical properties of intermetallic Ni50-xTi50Alx alloys (x=6, 7, 8, 9). Intermetallics, 2007, 15(5-6): 814-818.
[3] Xu H B, Meng L J, Xu J, et al. Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics, 2007, 15(5-6): 778-782.
[4] Meng L J, Li Y, Zhao X Q, et al. Effect of Nb on strengthening mechanism of Ti-rich TiNiAl intermetallics. Acta Aeronautica et Astronautica Sinica, 2007, 28 (5): 1206-1209. (in Chinese) 孟令杰, 李岩, 赵新青, 等. Nb对富钛TiNiAI金属间化合物强化机制的影响. 航空学报, 2007, 28(5): 1206- 1209.
[5] Li Y, Liu Z M, Xiao L. Phase transformations and mechanical properties of NiTiAl shape memory alloys with equal Ni/Ti atom ratio. International Journal of Modern Physics B, 2010, 24(15-16): 2423-2428.
[6] Guo W M, Song P S, Wu J T, et al. Development and prospect of powder metallurgy superalloys. Powder Metallurgy Industry, 1999, 9(2): 9-16. (in Chinese) 国为民, 宋璞生, 吴剑涛, 等. 粉末高温合金的研制与展望. 粉末冶金工业, 1999, 9(2): 9-16.
[7] Duan C J, Wang Q, Wang C Z. Hollow cathode discharge plasma sintering of aluminium nitride. Journal of Inorganic Materials, 2004, 19(5): 1011-1017.(in Chinese) 段成军, 王群, 王从曾. 空心阴极等离子烧结AlN陶瓷. 无机材料学报, 2004, 19(5): 1011-1017.
[8] Brunatto S F, Kuhn I, Klein A N, et al. Sintering iron using a hollow cathode discharge. Materials Science and Engineering: A, 2002, 343(1-2): 163-169.
[9] Alves C, Hajek V, Jr, dos Santos C A. Thermal behavior of supersolidus bronze powder compacts during heating by hollow cathode discharge. Materials Science and Engineering: A, 2003, 348(1-2): 84-89.
[10] Liu X. Study of hollow cathode plasma sintering process. Nanjing: School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 2004. (in Chinese) 刘旭. 空心阴极等离子烧结工艺研究. 南京: 南京航空航天大学材料科学与技术学院, 2004.
[11] Cluff D, Corbin S F. The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi. Intermetallics, 2010, 18(8): 1480-1490.
[12] Liu P S. Determining methods for porosity of porous materials. Titanium Industry Progress, 2005, 22(6): 35-37. (in Chinese) 刘培生. 多孔材料孔率的测定方法. 钛工业进展, 2005, 22(6): 35-37.
[13] Zhang Y G, Han Y F, Chen G L, et al. Structural intermetallics. Beijing: National Defense Industrial Press, 2001: 945. (in Chinese) 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料. 北京: 国防工业出版社, 2001: 945.
[14] Hwang C M, Wayman C M. Compositional dependence of transformation temperature in ternary TiNiAl and TiNiFe alloys. Scripta Metallurgical, 1983, 17(3): 381-384.
[15] Yang H J, Yang G J, Cao J M, et al. Exploratory of influence factors of phase change temperature in TiNi alloys. Rare Metals Letters, 2005, 24(4): 27-29. (in Chinese) 杨宏进, 杨冠军, 曹继敏, 等. 影响TiNi合金相变温度因素的探讨. 稀有金属快报, 2005, 24(4): 27-29.
[16] Whitney M, Corbin S F, Gorbet R B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Material, 2008, 56(3): 559-570.
[17] Chen X J, Zhang L, Xia D T, et al. Thermodynamics and kinetics analysis of NiTi by combustion synthesis. Material & Heat Treatment, 2007, 36(2): 10-12, 51. (in Chinese) 陈秀娟, 张林, 夏天东, 等. 热爆反应生成 NiTi的热力学与动力学分析. 材料热处理, 2007, 36(2): 10-12, 51.
[18] Li B Y, Rong L J, Li Y Y. The influence of addition of TiH2 in elemental powder sintering porous Ni-Ti alloys. Materials Science and Engineering: A, 2000, 281(1-2): 169-175.
[19] Wang H B, Han J C, Zhang X H, et al. Reaction mechanism of continually heating Ni and Al particles. Acta Metallurgical Sinica, 1998, 34(9): 992-998. (in Chinese) 王华彬, 韩杰才, 张幸红, 等. Ni-Al粉连续加热过程中的反应机理. 金属学报, 1998, 34(9): 992-998.
[20] Wang Y H, Lin J P, He Y H, et al. Progress in reactive mechanism of Ti with Al elemental powders. Materials Review, 2007, 21(1): 83-85. (in Chinese) 王衍行, 林均品, 贺跃辉, 等. 元素粉末Ti与Al反应机理的研究进展. 材料导报, 2007, 21(1): 83-85.
[21] Brain I. Thermochemical data of pure substances. Cheng N L, Niu S T, Xu G Y, translated. Beijing: Science Press, 2003. (in Chinese) 伊赫桑·巴伦. 纯物质热化学数据手册. 程乃良, 牛四通, 徐桂英, 译. 北京: 科学出版社, 2003.
[22] Morsi K. Review: reaction synthesis processing of Ni-Al intermetallic materials. Materials Science and Engineering: A, 2001, 299(1): 1-15.
[23] Dong H X, Jiang Y, He Y H, et al. Formation of porous Ni-Al intermetallics through pressureless reaction synthesis. Journal of Alloys and Compounds, 2009, 484(1): 907-913.
[24] Hsiung L C, Sheu H H. A comparison of the phase evolution in Ni, Al, and Ti powder mixtures synthesized by SHS and MA processes. Journal of Alloys and Compounds, 479(1-2): 314-325.
[25] Zhang N, Babayan Khosrovabadi P, Lindenhovius J H, et al. TiNi shape memory alloys prepared by normal sintering. Materials Science and Engineering: A, 1992, 150(2): 263-270.
[26] Dong H X, He Y H, Jiang Y, et al. Effect of Al content on porous Ni-Al alloys. Materials Science and Engineering: A, 2011, 528(13-14): 4849-4855.
[27] Lee T K, Mosunov E I, Hwang S K. Consolidation of a gamma TiAl-Mn-Mo alloy by elemental powder metallurgy. Materials Science and Engineering: A, 1997, 239-240: 540-545.
[28] Ye L L, Liu Z G, Raviprasad K, et al. Consolidation of MA amorphous NiTi powders by spark plasma sintering. Materials Science and Engineering: A, 1998, 241 (1-2): 290-293.
/
〈 | 〉 |