材料工程与机械制造

基于CFD的高速切削层流模拟

  • 张克国 ,
  • 刘战强 ,
  • 万熠
展开
  • 山东大学 机械工程学院, 山东 济南 250061
张克国 男, 博士研究生。主要研究方向: 高速切削加工技术。 E-mail: zkg@sdu.edu.cn;刘战强 男, 博士, 教授, 博士生导师。主要研究方向: 高速/高效/高性能切削加工技术。 E-mail: melius@sdu.edu.cn;万熠 男, 博士, 副教授。主要研究方向: 高速高效切削加工技术。 E-mail: wanyi@sdu.edu.cn

收稿日期: 2012-04-16

  修回日期: 2012-07-30

  网络出版日期: 2013-03-29

基金资助

"高档数控机床与基础制造装备"科技重大专项(2012ZX04003-041);山东省自然科学杰出青年基金(JQ200918);国家自然科学基金(50975162);国家重点基础研究发展计划(2009CB724401)

Laminar Flow Analog for High Speed Machining Based on CFD

  • ZHANG Keguo ,
  • LIU Zhanqiang ,
  • WAN Yi
Expand
  • School of Mechanical Engineering, Shandong University, Jinan 250061, China

Received date: 2012-04-16

  Revised date: 2012-07-30

  Online published: 2013-03-29

Supported by

Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment(2012ZX04003-041);Foundation of Shandong Province of China for Distinguished Young Scholars(JQ200918);National Natural Science Foundation of China (50975162);National Basic Research Program of China (2009CB724401)

摘要

高速切削塑性变形的本质是位错的不可逆运动与增殖,切削时固体的黏滞力与位错速度成正比,材料的黏性效应在材料的动态力学行为中起到越来越重要的作用,因此从流体的角度去理解比从固体的方面去认识更符合其特点。本文描述了高速切削的位错阻尼机理,建立了基于流体力学的高速切削理论模型,利用计算机模拟技术得到了高速切削时的速度场、压力场和应变率场,为高速切削研究提供了新的思路。通过分析计算结果得出如下结论:在刀尖上方存在速度滞止点,此处速度为零,压力最大,其位置变化影响着刀具寿命和工件已加工表面的质量;从压力最大点开始,压力值沿前刀面逐渐减小直到某处为零,此点即切屑与前刀面分离点;剪切面(刀尖与自由表面拐角处连线)上应变率最大,然后由此向外依次减小。

本文引用格式

张克国 , 刘战强 , 万熠 . 基于CFD的高速切削层流模拟[J]. 航空学报, 2013 , 34(3) : 703 -710 . DOI: 10.7527/S1000-6893.2013.0109

Abstract

In high speed metal cutting, the irreversible dislocation motion and multiplication result in the plastic deformation of the metal, and its velocity are proportional to the drag force of the solid. Therefore, the effect of viscosity becomes more and more important in describing the material dynamic behavior. The damping mechanism of dislocation in high speed metal cutting is described from the fluid aspect; a model for high speed machining is established based on fluid mechanics. The velocity distribution, the pressure distribution and the strain rate distribution are calculated by solving the Navier-Stokes equation and energy equation, which provides a new method to study high speed machining. Analytical results show that approximating the behavior of metal cutting by a fluid model during high speed machining is not irrelevant. A speed stagnation point is located at some distance from the tool tip on the tool rake face on which the maximum value of the pressure occurs, with zero speed. Its location influences the life of the tool and the quality of the finished surface. The pressure decreases along the rake face and reaches zero at some point away from the tool tip, which is the point of separation of the chip from the tool. The value of the strain rate exhibits a rapid increase from the tool tip to the free surface corner, and then decreases outwards.

参考文献

[1] Merchant M E. Mechanics of metal-cutting process. Journal of Applied Physics, 1945, 16(5): 267-275.

[2] Lee E H, Shaffer B W. The theory of plasticity applied to a problem of machining. Journal of Applied Mechanics, 1952, 19(2): 234-239.

[3] Oxley P L B. Mechanics of machining: an analytical approach to assessing machinability. Chichister: Ellis Horwood, 1989: 242.

[4] Khludkva A N. Plastic strain energy in ultrafast metal cutting. Russian Physics Journal, 1978, 21(11): 1501- 1502.

[5] Zhang X T, Jia G H. Debris analysis of on-orbit satellite collision based on hypervelocity impact simulation. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1224-1230. (in Chinese) 张晓天, 贾光辉. 基于超高速碰撞仿真的卫星碰撞解体碎片分析. 航空学报, 2011, 32(7):1224-1230.

[6] Shaw M C. The size effect in metal cutting. Sadhana, 2003, 28: 875-896.

[7] Yang G T. Dynamic theory of plasticity. Beijing:Higher Education Press. 2000:7-10. (in Chinese) 杨桂通. 塑性动力学. 北京: 高等教育出版社, 2000: 7-10.

[8] El-Zahry R M. On the hydrodynamic characteristics of the secondary shear zone in metal machining with sticking-sliding friction using the boundary layer theory. Wear, 1987, 115(3): 349-359.

[9] Kwon K B, Cho D W, Lee S J, et al. A fluid dynamic analysis model of the ultra-precision cutting mechanism. ClRP Annals-Manfacturing Technology, 1999, 48(1): 43-46.

[10] Kazban R V. Effect of tool parameters on residual stress and temperature generation in high-speed machining of aluminum alloys. Indiana:University of Notre Dame, 2005: 37-39.

[11] Liu Z Q, Zhang K G. Sensitivity analysis of Johnson-Cook material constants on adiabatic shear. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2140-2146. (in Chinese) 刘战强, 张克国. J-C本构参数对绝热剪切影响的敏感性分析.航空学报, 2011, 32(11): 2140-2146.

[12] He N, Lee T C. Assessment of deformation of a locallized chip in high speed machining. Journal of Materials Processing Technology, 2002, 129: 101-104.

[13] Bi X F, Liu Y X. Calculating strain rate and strain during orthogonal cutting in accordance to streamline theory. Journal of Northeastern University, 2009, 30(8): 1185-1188. (in Chinese) 毕雪峰, 刘永贤. 基于流线理论计算正交切削中应变率和应变的方法.东北大学学报, 2009, 30(8):1185-1188.

[14] Meyers M A. Dynamic behavior of materials. Zhang Q M, Liu Y, translated. Beijing: National Defence Industry Press, 2006: 230-240. (in Chinese) Meyers M A. 材料的动态力学行为. 张庆明, 刘彦, 译. 北京: 国防工业出版社, 2006: 230-240.

[15] Cheng J Y, Zhou G Q. A new theory of dislocation motion and its application to description of dynamic mechanical behavior of materials. Acta Metallurgica Sinica, 1995, 31(10): 431-437. (in Chinese) 程经毅, 周光泉. 一种新的位错运动理论及对材料动态力学行为的描述. 金属学报, 1995, 31(10): 431-437.

[16] Orowan E. Problems of plastic gliding. Proceedings of the Physical Society,1940, 52: 8.

[17] Parameswaran V R,Weertman J. Dislocation mobility in lead and Pb-In alloy single crystals. Metallurgical and Materials Transactions B, 1971, 2(4): 1233-1243.

[18] Su G S. Evolution and mechanisms of saw-tooth chip formation in high-speed machining. Jinan: School of Mechanical Engineering, Shandong University, 2011. (in Chinese) 苏国胜. 高速切削锯齿形切屑形成过程与形成机理研究. 济南:山东大学机械学院, 2011.

[19] Li G H, Wang M J, Duan C Z, et al. Finite element simulation of the process of orthogonal metal cutting based on the ANSYS/LS-DYNA. Transactions of the Chinese Society of Agricultural Machinery, 2007, 38(12):173-176. (in Chinese) 李国和, 王敏杰, 段春争, 等. 基于ANSYS/LS-DYNA的金属切削过程有限元模拟, 农业机械学报, 2007, 38(12): 173-176.

[20] Guo Y B, Yen D W. A FEM study on mechanisms of discontinuous chip formation in hard machining. Journal of Materials Processing Technology, 2004, 155-156: 1350-1356.

[21] Srinivasan K. Experimental determination of strain rate and flow stress in the primary shear zone while machining AISI 4340 and Ti-6AL-4V. Wichita: the Department of Industrial and Manufacturing Engineering, Wichita State University, 2010.

文章导航

/