电子与控制

一种快速航空图像去雾算法

  • 王敬东 ,
  • 张文涛 ,
  • 王子瑞 ,
  • 许丽红
展开
  • 1. 南京航空航天大学 自动化学院, 江苏 南京 210016;
    2. 中国航空工业集团公司 洛阳电光设备研究所, 河南 洛阳 471000
王敬东 男, 硕士, 副教授。主要研究方向: 机器视觉, 计算机测控。 Tel: 025-84893451 E-mail: wjd1291@nuaa.edu.cn;张文涛 男, 硕士。主要研究方向: 数字图像处理。 E-mail: shadow-fiend@163.com;王子瑞 男, 学士。主要研究方向: 数字图像处理。 Tel: 025-84893451 E-mail: wangzirui9011@163.com;许丽红 女, 硕士研究生。主要研究方向: 数字图像处理。 Tel: 025-84893451 E-mail: xlhnuaa@163.com

收稿日期: 2012-04-27

  修回日期: 2012-10-10

  网络出版日期: 2013-03-29

基金资助

国家自然科学基金(61074161)

A Fast Aerial Image De-haze Algorithm

  • WANG Jingdong ,
  • ZHANG Wentao ,
  • WANG Zirui ,
  • XU Lihong
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Luoyang Electro-optic Equipment Research Institute, Aviation Industry Corporation of China, Luoyang 471000, China

Received date: 2012-04-27

  Revised date: 2012-10-10

  Online published: 2013-03-29

Supported by

National Natural Science Foundation of China (61074161)

摘要

基于暗元先验规律的图像去雾算法去雾效果较好,但在进行介质透射率估计时会造成图像中出现方块效应,所以需要进行图像抠图处理。而图像抠图计算复杂度非常高,使得图像去雾时间消耗很大。本文提出一种快速图像去雾算法,使用Kuwahara边缘-角点保持滤波器对大气散射光进行估计,并对所采用的Kuwahara滤波器进行改进。通过增加子块的数目以及进行局部加权等,提高边缘保留效果,抑制方块效应,从而获得较为准确的介质透射率。实验结果表明本文算法时间复杂度低,图像去雾效果好。

本文引用格式

王敬东 , 张文涛 , 王子瑞 , 许丽红 . 一种快速航空图像去雾算法[J]. 航空学报, 2013 , 34(3) : 636 -643 . DOI: 10.7527/S1000-6893.2013.0101

Abstract

An image matting algorithm is employed in order to alleviate the block effect of the image transmission which is generated during conducting the dark channel prior. However, the image de-haze process is very time-consuming as the matting algorithm is of huge computational complexity. A fast algorithm for image haze removal is therefore proposed in which the Kuwahara edge-and-corner preserving filter is used to estimate the atmospheric scattering light and the Kuwahara filter is adapted. By increasing the number of sub-blocks and adjusting the local weight coefficients, etc., the edge preservation is improved and the block effect is restrained, which leads to an accurate media transmission rate. The experimental result shows the algorithm has a low time complexity, while the visual effect of the image is satisfactory after the de-haze restoration.

参考文献

[1] Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001: 186-193.

[2] Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. IEEE Conference on Computer Vision and Pattern Recognition, 2000: 598-605.

[3] Narasimhan S G, Nayar S K.Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.

[4] Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.

[5] Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3): 511-525.

[6] Namer E, Schechner Y Y. Advanced visibility improvement based on polarization ltered images. Proceedings of the Polarization Science and Remote Sensing II, 2005: 36-45.

[7] Shwartz S, Namer E, Schechner Y Y. Blind haze separation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 1984-1991.

[8] Tan R. Visibility in bad weather from a single image. IEEE Conference on Computer Vision and Pattern Recognition, 2008: 2347-2354.

[9] Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): 721-729.

[10] Kratz L, Nishino K. Factorizing scene albedo and depth from a single foggy image. IEEE 12th International Conference on Computer Vision, 2009: 1701-1708.

[11] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1956-1963.

[12] Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systemsand Applications, 1999: 97-100.

[13] Papari G, Petkov N, Campisi P. Artistic edge and corner enhancing smoothing. IEEE Transactions on Image Processing, 2007, 16(10): 2449-2462.

[14] Hillebrand M, Müller C H. On outlier robust corner-preserving methods for reconstructing noisy images. The Annals of Statistics, 2007, 35(1): 132-165.

[15] Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image. IEEE 12th International Conference on Computer Vision, 2009: 2201-2208.

[16] Gverton K J, Weymouth T E. A noise reducing preprocessing algorithm. Proceedings of IEEE Computer Science Conference on Pattern Recognition and Image Processing, 1979: 498-507.

[17] Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.

[18] Papari G, Petkov N, Campisi P. Artistic edge and corner enhancing smoothing. IEEE Transactions on Image Processing, 2007, 16(10): 2449-2462.

[19] Hautiere N, Tarel J P, Lavenant J, et al. Automatic fog detection and estimation of visibility distance through use of an onboard camera. Machine Vision and Applications, 2006, 17(1): 8-20.

文章导航

/