刚体航天器姿态跟踪系统的自适应积分滑模控制
收稿日期: 2012-04-09
修回日期: 2012-05-28
网络出版日期: 2013-03-29
基金资助
国家自然科学基金(61104153);国家"973"计划(2012CB720000)
Adaptive Integral Sliding Mode Control for Rigid Spacecraft Attitude Tracking
Received date: 2012-04-09
Revised date: 2012-05-28
Online published: 2013-03-29
Supported by
National Natural Science Foundation of China (61104153); National Basic Research Program of China (2012CB720000)
丛炳龙 , 刘向东 , 陈振 . 刚体航天器姿态跟踪系统的自适应积分滑模控制[J]. 航空学报, 2013 , 34(3) : 620 -628 . DOI: 10.7527/S1000-6893.2013.0099
When the adaptive sliding mode control (ASMC) technique is utilized for attitude tracking system design, a prior knowledge of the upper bounds of external disturbances and inertia matrix uncertainty is not required for switching gain tuning. However, there may be over-adaptation in current ASMC design in that the generated switching gain is unnecessarily large with respect to the required value. To address such a problem, this paper considers the attitude tracking control of a rigid spacecraft in the framework of ASMC design and proposes an adaptive integral sliding mode control scheme. First, the underlying causes of over-adaptation are analyzed in detail. Then, the influence of initial tracking error on switching gain adaptation is eliminated by exploiting the global sliding mode feature of the integral sliding mode control. The switching gain reduction ability of the proposed strategy is verified by theoretical analysis and simulation results.
[1] Vadali S R. Variable-structure control of spacecraft large-angle maneuvers. Journal of Guidance, Control, and Dynamics, 1986, 9(3): 235-239.
[2] Lo S C, Chen Y P. Smooth sliding-mode control for spacecraft attitude tracking maneuvers. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1345-1349.
[3] Crassidis J L, Markley F L. Sliding mode control using modified Rodrigues parameters. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1381-1383.
[4] Boškovi? J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.
[5] Yoo D S, Chung M J. A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties. IEEE Transactions on Automatic Control, 1992, 37(6): 860-865.
[6] Lin F J, Chiu S L, Shyu K K. Novel sliding mode controller for synchronous motor drive. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 532-542.
[7] Wai R J. Adaptive sliding-mode control for induction servomotor drive. IEE Proceedings Electric Power Applications, 2000, 147(6): 553-562.
[8] Souder J S, Hedrick J K. Adaptive sliding mode control of air-fuel ratio in internal combustion engines. International Journal of Robust and Nonlinear Control, 2004, 14(6): 525-541.
[9] Huang Y J, Kuo T C, Chang S H. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2): 534-539.
[10] Shahravi M, Kabganian M, Alasty A. Adaptive robust attitude control of a flexible spacecraft. International Journal of Robust and Nonlinear Control, 2006, 16(6): 287-302.
[11] Yeh F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory & Applications, 2010, 4(7): 1254-1264.
[12] Xiao B, Hu Q L, Huo X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft attitude under actuator fault. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1869-1878. (in Chinese) 肖冰, 胡庆雷, 霍星, 等. 执行器故障的挠性航天器姿态滑模容错控制. 航空学报, 2011, 32(10): 1869-1878.
[13] Zhu Z, Xia Y Q, Fu M Y. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4898-4907.
[14] Wheeler G, Su C Y, Stepanenko Y. A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties. Automatica, 1998, 34(12): 1657-1661.
[15] Chen X K, Su C Y, Fukuda T. A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems. IEEE Transactions on Control Systems Technology, 2004, 12(4): 560-577.
[16] Plestan F, Shtessel Y B, Bregeault V, et al. New methodologies for adaptive sliding mode control. International Journal of Control, 2010, 83(9): 1907-1919.
[17] Gao W B. Theory of variable structure control and its design. Beijing: China Science & Technology Press, 1996. (in Chinese) 高为炳. 变结构控制的理论及其设计方法. 北京: 中国科学技术出版社, 1996.
[18] Bartoszwicz A. Time-varying sliding modes for second-order systems. IEE Proceedings Control Theory and Applications, 1996, 143(5): 455-462.
[19] Utkin V I, Shi J X. Integral sliding mode in systems operating under uncertainty conditions. Proceedings of Conference on Decision and Control, 1996: 4591-4596.
[20] Schaub H, Junkins J L. Analytical mechanics of aerospace systems. Reston, Virginia: AIAA, 2003.
/
〈 | 〉 |