固体力学与飞行器总体设计

基于参数化组件定义的复合材料旋翼桨叶结构优化设计

  • 杨建灵 ,
  • 张丽艳 ,
  • 周少华
展开
  • 1. 南京航空航天大学 机电学院, 江苏 南京 210016;
    2. 中国直升机设计研究所, 江西 景德镇 333001
杨建灵 男, 博士研究生。主要研究方向: 数字化设计制造技术、 设计过程集成与优化。 Tel: 025-84892570 E-mail: ririyeyjl@163.com;张丽艳 女, 博士, 教授, 博士生导师。主要研究方向: 基于数字图像的快速柔性三维测量、 产品逆向建模与复杂曲面产品质量检测、 高效数控加工与仿真、 数字化制造技术、 设计过程集成与优化。 Tel: 025-84892004 E-mail: zhangly@nuaa.edu.cn

收稿日期: 2012-03-23

  修回日期: 2012-06-12

  网络出版日期: 2013-03-29

Composite Helicopter Rotor Blade Optimization Design Based on Parametric Module Definition

  • YANG Jianling ,
  • ZHANG Liyan ,
  • ZHOU Shaohua
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Chinese Helicopter Research and Development Institute, Jingdezhen 333001, China

Received date: 2012-03-23

  Revised date: 2012-06-12

  Online published: 2013-03-29

摘要

为提高直升机复合材料旋翼桨叶结构设计效率,依据实际工程应用情况,提出了一种基于参数化组件定义的复合材料旋翼桨叶结构优化设计方法。以C型梁复合材料旋翼桨叶为研究对象,建立以精确的桨叶组件定义参数为设计变量的剖面优化和整体优化模型,通过桨叶的剖面优化确定出整体优化的初值,再由桨叶整体优化实现桨叶结构的最优设计。最后对某型主桨叶进行结构设计实例验证,结果表明该方法能够有效地实现直升机复合材料旋翼桨叶结构优化设计。

本文引用格式

杨建灵 , 张丽艳 , 周少华 . 基于参数化组件定义的复合材料旋翼桨叶结构优化设计[J]. 航空学报, 2013 , 34(3) : 554 -565 . DOI: 10.7527/S1000-6893.2013.0092

Abstract

A composite rotor blade structure optimization design approach based on parametric module definition is presented to improve design efficiency for engineering application. By taking a C-spar composite rotor blade as the research object, both the profile and the overall structure optimization models are built based on parametric module definition. By using the results of the profile optimization, the initial values of the overall structure optimization model are obtained. Then, the overall structure optimization is implemented to obtain the best blade structure. A case study is performed. The results demonstrate that the proposed method can complete the structure design of composite rotor blades efficiently.

参考文献

[1] Peters D A, Rossow W P, Korn A, et al. Design of helicopter rotor blades for optimum dynamic characteristics. Journal of Computers and Mathematics with Applications, 1986, 12(1): 85-109.

[2] Lim J, Chopra I. Aeroelastic optimization of a helicopter rotor. Proceedings of 44th Annual Forum of the American Helicopter Society, 1988: 545-558.

[3] Walsh J L, Young K C, Pritchard J I, et al. Integrated aerodynamic dynamic structural optimization of helicopter rotor blades using multilevel decomposition. NASA Technical Paper 3465, 1995.

[4] Tarzanin F, Young D K. Boeing rotorcraft experience with rotor design and optimization. AIAA-1998-4733, 1998.

[5] Guo J X, Xiang J W. Composite rotor blade design optimization for vibration reduction with aeroelastic constraints. Chinese Journal of Aeronautics, 2004, 17(3): 152-158.

[6] Chattopadhyay A, Walsh J L. Application of optimization methods to helicopter rotor blade design. Structural Optimization, 1990(2): 11-22.

[7] Fang G H, Hou R L, Chen G D, et al. Structural optimization and vibration control of composite rotor blades. Acta Aeronautic et Astronautica Sinica, 1991, 12(12): 554-559. (in Chinese) 樊光华, 侯汝良, 陈耿东, 等. 复合材料旋翼桨叶的结构优化与振动控制. 航空学报, 1991, 12(12): 554-559.

[8] Pritchard J I, Adelman H M, Walsh J L, et al. Optimizing tuning masses for helicopter rotor blade vibration reduction and comparison with test data. Journal of Aircraft, 1993, 30(6): 906-910.

[9] Venkatesan C, Friedmann P P, Yuan K A. A new sensitivity analysis for structural optimization of composite rotor blade. Mathematical and Computer Modeling, Special Issue on Rotorcraft Modeling: Part 1, 1994, 19(3-4): 1-25.

[10] Gu Y X, Liu S T, Guan Z Q, et al. Design-oriented dynamic design optimization of composite rotor blades. Acta Aeronautic et Astronautica Sinica, 1998, 19(3): 338-341. (in Chinese) 顾元宪, 刘书田, 关振群, 等. 面向设计的复合材料旋翼桨叶动力优化设计. 航空学报, 1998, 19(3): 338-341.

[11] Glaz B, Friedmann P P, Liu L. Surrogate based optimization of helicopter rotor blades for vibration reduction in forward flight. Industrial Application, 2008, 35(4): 341-363.

[12] Xiang L. Advances in theory and algorithms of hierarchical optimal problem. Control and Decision, 2001, 16(6): 854-863. (in Chinese) 向丽. 递阶优化问题理论及其算法研究与进展. 控制与决策, 2001, 16(6): 854-863.

[13] Yang J L, Zhang L Y, Fang Y H, et al. Structure design for composite rotor blade based on parametric module definition. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(5): 595-600. (in Chinese) 杨建灵, 张丽艳, 方永红, 等. 基于参数化描述的复合材料桨叶结构设计. 南京航空航天大学学报, 2009, 41(5): 595-600.

[14] Lu L X, Wang X Z, Wang Y B, et al. Helicopter structure and design. Beijing: Aviation Industry Press, 2009. (in Chinese) 路录祥, 王新洲, 王遇波, 等. 直升机结构与设计. 北京:航空工业出版社. 2009.

[15] Yang J L, Zhang L Y, Zhou S H, et al. Cross-section torsion stiffness calculation of composite rotor blade based on accurate parametric definition. Journal of Aerospace Power, 2012, 27(5): 1087-1095. (in Chinese) 杨建灵, 张丽艳, 周少华, 等. 基于精确参数化定义的复合材料桨叶剖面扭转刚度计算. 航空动力学报, 2012, 27(5): 1087-1095.

[16] Yang W D, Deng J H. Aeroelastic stability analysis of helicopter rotor blade with swept tips. Journal of Nanjing University of Aeronautics and Astronautics, 2003, 35(3): 248-252. (in Chinese) 杨卫东, 邓景辉. 直升机后掠桨尖旋翼气弹稳定性研究. 南京航空航天大学学报, 2003, 35(3): 248-252.

文章导航

/