改进的多目标粒子群算法综合激励受限的共形阵
收稿日期: 2012-10-11
修回日期: 2013-01-21
网络出版日期: 2013-03-27
Improved Multi-objective Particle Swarm Optimization Algorithm for Synthesizing Conformal Arrays with Excitations Restricted
Received date: 2012-10-11
Revised date: 2013-01-21
Online published: 2013-03-27
针对激励限制下的共形阵功率方向图综合问题,提出一种改进的多目标粒子群优化(IMOPSO)算法。将共形阵列在激励限制条件下的综合命题,转化为激励优化和功率方向图赋形的多目标优化命题。IMOPSO算法通过引入多子群寻优、粒子聚焦距离优选、非支配解集修剪以及新生粒子微扰复制等机制,显著提高了传统多目标粒子群优化(MOPSO)算法所构建Pareto解集的优越性和散布性。IMOPSO算法成功用于12元微带柱面共形阵非赤道面的方向图综合,获得了不同约束条件下最优余割平方波束方向图综合结果集合,综合过程考虑了各阵元的互耦作用,为规划共形相控阵的激励限制提供了极有价值的参考。
赵菲 , 柴舜连 , 叶良丰 , 齐会颖 , 毛钧杰 . 改进的多目标粒子群算法综合激励受限的共形阵[J]. 航空学报, 2013 , 34(8) : 1944 -1952 . DOI: 10.7527/S1000-6893.2013.0117
For the purpose of power pattern synthesis for conformal arrays with excitations restricted, an improved multi-objective particle swarm optimization (IMOPSO) algorithm is proposed. By applying this IMOPSO algorithm, the original problem can be transformed into a multi-objective optimization problem in which excitation optimization and power pattern synthesis are considered at the same time. By introducing multi-subgroup optimization, particle focused distance selection, Pareto solution set cutting, and a new particle copy mechanism, the performance of the IMOPSO algorithm is improved significantly as compared with the traditional multi-objective particle swarm optimization (MOPSO) algorithm. Moreover, IMOPSO algorithm is applied to synthesizing multiple-pattern in 12-element microstrip cyclinder sector conformal array in non-equatorial plane successfully, and a set of power patterns with different excitation restrictions for microstrip conformal arrays is achieved by IMOPSO algorithm, with the mutual coupling and polarizing deterioration of the elements considered. This offers a valuable reference for designing feed strategies of conformal phased array conformal phased array.
[1] Qi Z S, Guo Y, Wang B H, et al. Optimal design for conformal array antennas with respect to element polarization. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 693-701. (in Chinese) 齐子森, 郭英, 王布宏, 等. 共形阵列天线单元极化形式的优化设计. 航空学报, 2011, 32(4): 693-701.
[2] Ferreira J A, Ares F. Pattern synthesis of conformal arrays by the simulated annealing technique. Electronics Letters, 1997, 33(14): 1187-1189.
[3] Guo J, Li J. Pattern synthesis of conformal array antenna in the presence of platform using differential evolution. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2621-2651.
[4] Haupt R L, Werner D H. Genetic algorithms in electromagnetics. New York: John Wiley & Sons, Inc., 2006: 1-4.
[5] Zhang Y J, Gong S X, Wang W T, et al. Optimization design of conformal array on an irregular curved surface. Journal of Electronics & Information Technology, 2010, 32(9): 2226-2230. (in Chinese) 张玉洁, 龚书喜, 王文涛, 等. 非规则曲面共形阵列的优化设计. 电子与信息学报, 2010, 32(9): 2226-2230.
[6] Boeringer D W, Werner D H. Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis. IEEE Transactions on Antennas and Propagation, 2005, 53(8): 2662-2673.
[7] Li W T, Hei Y Q, Shi X W. Enhanced particle swarm optimization algorithm for conformal reconfigurable array. Chinese Journal of Radio Science, 2010, 25(3): 477-484. (in Chinese) 李文涛, 黑永强, 史小卫. 增强粒子群优化算法设计共形可重构天线阵. 电波科学学报, 2010, 25(3): 477-484.
[8] Zhao F, Qi H Y, Qiu L, et al. Adaptive dynamic Meta particle swarm optimization algorithm synthesizing multiple-pattern conformal array. Journal of Electronics & Information Technology, 2012, 34(6): 1476-1482. (in Chinese) 赵菲, 齐会颖, 邱磊, 等. 自适应动态Meta粒子群优化算法综合多方向图共形阵列. 电子与信息学报, 2012, 34(6): 1476-1482.
[9] Liu X F. Study on the microstrip conformal array. Xi'an: Key Laboratory of Antennas and Microwave Technology, Xidian University, 2008. (in Chinese) 刘旭峰. 微带共形阵列天线的研究. 西安: 西安电子科技大学天线与微波技术重点实验室, 2008.
[10] Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms. Simulation, 1994, 62(4): 242-253.
[11] Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computaion, 1996, 4(1): 1-32.
[12] Jin X L. PSO-based multi-objective optimization algorithm research and its applications. Zhejiang: Institute of Systems Engineering, Zhejiang University, 2006. (in Chinese) 金欣磊. 基于PSO的多目标优化算法研究及应用. 浙江: 浙江大学系统工程研究所, 2006.
[13] Baumgartner U, Magele C, Preis K, et al. Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design. IEE Proceedings, 2004, 151(6): 499-502.
[14] Carlos A C. Handling multiple objectives with particle swarm optimization. IEEE Transctions on Evolutionary Computaton, 2004, 8(3): 259-279.
[15] Zheng J H. Multiple objectives evolution strategy and application. Beijing: Science Press, 2011: 2-5. (in Chinese) 郑金华. 多目标进化算法及其应用. 北京: 科学出版社, 2011: 2-5.
[16] Selleri S, Mussetta M, Pirinoli P, et al. Differentiated meta-PSO methods for array optimization. IEEE Transactions on Antennas and Propagation, 2008, 56(1): 67-75.
[17] Zhang Y J, Chen A X. Design and realization of Ka-band high-gain circularly polarized airborne microstrip antenna array. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1245-1249. (in Chinese) 张艳君, 陈爱新. Ka波段高增益圆极化机载微带天线阵的设计与实现. 航空学报, 2010, 31(6): 1245-1249.
[18] Milligan T. More applications of Euler rotation angles. IEEE Antennas and Propagation Magazine, 1999, 41(4): 78-83.
[19] Zhao F, Qi H Y, Xiao K, et al. The study of the conformal array pattern synthesis including mutual coupling. Journal of National University of Defense Teghnology, 2011, 33(6): 84-88.(in Chinese) 赵菲, 齐会颖, 肖科, 等. 考虑互耦修正的共形天线阵方向图综合研究. 国防科技大学学报, 2011, 33(6): 84-88.
[20] Zhao F, Xiao K, Qi H Y, et al. Preconditioned alternate projections method to synthesise conformal array. Electronics Letters, 2011, 47(13): 735-736.
/
〈 | 〉 |