电子与控制

考虑避免碰撞的编队卫星自适应协同控制

  • 郑重 ,
  • 宋申民
展开
  • 哈尔滨工业大学 控制理论与制导技术研究中心, 黑龙江 哈尔滨 150001
郑重 男,博士研究生。主要研究方向:编队卫星协同控制、卫星姿态与轨道控制。Tel:0451-86402204-8212 E-mail:zhengzhong8610@126.com;宋申民 男,博士,教授,博士生导师。主要研究方向:航天器轨道机动与姿态控制、非线性鲁棒控制与智能控制、先进滤波方法与组合导航等。Tel:0451-86402204-8214 E-mail:songshenmin@hit.edu.cn

收稿日期: 2012-10-11

  修回日期: 2013-03-18

  网络出版日期: 2013-03-22

基金资助

国家自然科学基金(61174037);国家"973"计划 (2012CB821205);CAST创新基金(CAST20120602)

Adaptive Coordination Control of Satellites Within Formation Considering Collision Avoidance

  • ZHENG Zhong ,
  • SONG Shenmin
Expand
  • Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China

Received date: 2012-10-11

  Revised date: 2013-03-18

  Online published: 2013-03-22

Supported by

National Natural Science Foundation of China (61174037);National Basic Research Program of China (2012CB821205);Innovation Fund of China Academy of Space Technology (CAST20120602)

摘要

基于势函数法研究具有模型不确定性的编队飞行卫星避免碰撞的自适应协同控制。势函数法的思想为设计碰撞区域势函数值较大,所设计的控制律使得系统势函数具有减小的趋势,从而实现避免碰撞的编队飞行任务。首先,在无外部参考轨迹的情况下,通过引入避免碰撞势函数,提出一种自适应协同控制器,编队卫星最终实现速度一致和避免碰撞。进一步,考虑已知外部参考轨迹的情形,基于新的势函数方法,设计新的自适应协同控制器,能够同时实现避免碰撞、速度一致、卫星跟踪参考轨迹的目的。对于所提出的两种控制方法,均通过合理地应用Lyapunov稳定性理论分析了闭环系统的稳定性。仿真结果表明了所设计控制方法的有效性。

本文引用格式

郑重 , 宋申民 . 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013 , 34(8) : 1934 -1943 . DOI: 10.7527/S1000-6893.2013.0174

Abstract

The adaptive coordination control based on potential function method associated with collision avoidance is investigated for formation flying satellites with model uncertainty. The idea of potential function method is designing the bigger value of potential function in the collision area. The potential function of the system declines with the designed control law, thus the mission of formation flying with collision avoidance can be satisfied. Firstly, an adaptive coordinated controller is proposed by introducing a collision avoidance potential function in the absence of external reference trajectories, so that formation flying satellites can achieve velocity consensus and collision avoidance eventually. Then, taking into consideration an external reference trajectory, a new adaptive coordinated controller is designed based on a new potential function, and the objective of collision avoidance, velocity consensus and satellites tracking the reference trajectory is realized simultaneously. For the two presented control approaches, the stability of the closed loop system is both analyzed by using Lyapunov stability theory. Simulation results demonstrate the effectiveness of the designed control methods.

参考文献

[1] Kapila V, Sparks A G, Buffington J M, et al. Spacecraft formation flying: dynamics and control. Proceedings of the 1999 American Control Conference, 1999: 4137-4141.
[2] Anderson M R, Robbins A C. Formation flight as a cooperative game. AIAA-1998-4124, 1998.
[3] Yin J F, He Q, Han C. Collision analysis of spacecraft relative motion based on relative orbit elements. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 311-320. (in Chinese) 殷建丰, 贺泉, 韩潮. 基于相对轨道要素的航天器相对运动碰撞分析. 航空学报, 2011, 32(2): 311-320.
[4] Frazzoli E, Mao Z H, Oh J H, et al. Aircraft conflict resolution via semidefinite programming. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 79-86.
[5] Richards A, Schouwenaars T, How J P, et al. Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 755-764.
[6] Ghosh R, Tomlin C. Maneuver design for multiple aircraft conflict resolution. Proceedings of the 2000 American Control Conference, 2000: 672-676.
[7] Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings of the 40th IEEE Conference on Decision and Control, 2001: 2968-2973.
[8] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420.
[9] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307.
[10] Xue D, Yao J, Chen G, et al. Formation control of networked multi-agent systems. IET Control Theory and Application, 2010, 4(10): 2168-2176.
[11] Yao J Y, Ordóez R, Gazi V. Swarm tracking using artificial potentials and sliding mode control. Journal of Dynamic System, Measurement, and Control, 2007, 129(5): 749-754.
[12] Pereira A R, Hsu L, Ortega R. Globally stable adaptive formation control of Euler-Lagrange agent via potential function. Proceedings of the 2009 American Control Conference, 2009: 2606-2611.
[13] Meng Z Y, Lin Z L, Ren W. Leader-follower swarm tracking for networked Lagrange system. Systems & Control Letters, 2012, 61(1): 117-126.
[14] Chopra N, Stipanovic D M, Spong M W. On synchronization and collision avoidance for mechanical systems. Proceedings of the 2008 American Control Conference, 2008: 3713-3718.
[15] Zhang D W, Song S M, Pei R, et al. Ellipse cissoid-based potential function guidance for autonomous rendezvous and docking with non-cooperative target. Journal of Astronautics, 2010, 31(10): 2259-2268. (in Chinese) 张大伟, 宋申民, 裴润, 等. 非合作式自主交会对接的椭圆蔓叶线势函数安全制导. 宇航学报, 2010, 31(10): 2259-2268.
[16] Liu H, Liang W. Development of DARPA's F6 program. Spacecraft Engineering, 2010, 19(2): 92-98. (in Chinese) 刘豪, 梁巍. 美国国防高级研究计划局F6项目发展研究. 航天器工程, 2010, 19(2): 92-98.
[17] Zhang B Q, Song S M. Decentralized coordinated control for multiple spacecraft formation maneuvers. Acta Astronautica, 2012, 74(5-6): 79-97.
[18] Dullerud G E, Paganini F G. A course in robust control theory—a convex approach. New York: Springer-Verlag, Inc., 2000.
[19] Slotine J J E, Li W P. Applied nonlinear control. Upper Saddle River: Prentice Hall, 1991.
文章导航

/