陀螺力矩器标度因数变化模型及稳定性研究
收稿日期: 2012-06-28
修回日期: 2013-03-20
网络出版日期: 2013-03-22
Research of Gyro Torquer Scale Factor Variation Model and Its Stability
Received date: 2012-06-28
Revised date: 2013-03-20
Online published: 2013-03-22
力矩器作为动力调谐陀螺(DTG)的关键器件,影响着陀螺在贮存条件下的长期稳定性。力矩器标度因数是衡量陀螺稳定性的重要参数。为研究动力调谐陀螺仪力矩器标度因数的变化原理和规律,以故障模式、机理和影响分析(FMMEA)方法为基础,分析贮存条件下陀螺力矩器标度因数变化主机理,确定影响其变化的机理部位和应力类型;结合底层主机理部件胶蠕变和磁钢退磁随环境应力、时间的变化趋势,建立系统层力矩器标度因数变化量的长期预报模型;以某DTG为例,结合其贮存剖面,进行基于模型的贮存稳定性分析,计算得到5年内力矩器标度因数变化值,与历史数据相比较,二者趋势一致,证明本文研究方法的正确性;同时利用建立的变化模型进行陀螺加速性分析,得到陀螺参数的加速因子,为加速退化试验的设计提供依据。
许丹 , 陈云霞 , 梁媛 , 康锐 . 陀螺力矩器标度因数变化模型及稳定性研究[J]. 航空学报, 2013 , 34(6) : 1319 -1325 . DOI: 10.7527/S1000-6893.2013.0178
The torquer is used as a key component in a dynamically tuned gyro (DTG), affecting its long-term stability in storage conditions. The gyro torquer scale factor is a significant parameter for judging gyro stability. To study the principle and tendency of variation for the torquer scale factor of a dynamically tuned gyroscope, the main mechanism is first analyzed in storage condition based on failure mode, mechanisms and effects analysis (FMMEA) method, which determines its key components and the stress types. After studying the tendency of glue creep and alnico demagnetization following environmental stress and time, a long-term variation prediction model of the torquer scale factor is established. Then, a certain DTG is taken as an example, and the storage stability on the basis of the model is analyzed combining with its storage profile. Finally the value of torquer scale factor variation within five years is calculated; meanwhile, a comparison with historical data shows that the two trends are consistent, which proves the validity of this research approach. Furthermore, the acceleration factor is obtained through analyzing the established model which can also be used to study the acceleration characteristic of the gyro, so as to provide a basis for accelerated degradation test design.
Key words: dynamically tuned gyro; torquer scale factor; acceleration; storage; stability
[1] Chen Y B, Zhong B. Principles of inertial navigation. Beijing: National Defense Industry Press, 2007: 1-5. (in Chinese) 陈永冰, 钟斌. 惯性导航原理. 北京:国防工业出版社, 2007: 1-5.
[2] Zang R C, Cui P Y. Research on time series modeling method for gyroscope random bias. Journal of System Simulation, 2005, 17(8): 1845-1847. (in Chinese) 臧荣春, 崔平远. 陀螺随机漂移时间序列建模方法研究. 系统仿真学报, 2005, 17(8): 1845-1847.
[3] Liu J F, Yuan G N, Wang K M. Analysis of gyro rotor surface deformation and its influence on performance. Navigation of China, 2006(2): 8-11. (in Chinese) 刘建锋, 袁赣南, 王奎民. 陀螺转子形状及变形分析和对陀螺性能的影响. 中国航海, 2006(2): 8-11.
[4] Mansour W M, Lacchimi C. Two-axis dry tuned-rotor gyroscopes: design and technology. Journal of Guidance, Control, and Dynamics, 1993, 16(3): 417-425.
[5] Wang X Q, Tian L, Jiang Z C, et al. The analysis of magnetic circuit in torque designing. Control Technology of Tactical Missile, 2010, 27(3): 31-33. (in Chinese) 王晓强, 田赁, 蒋正川, 等. 力矩器设计中磁路分析. 战术导弹控制技术, 2010, 27(3): 31-33.
[6] Zhang Y E. Optimum design of the permanent-magnet torquer. Journal of Southeast University, 1998, 28(6): 155-158. (in Chinese) 张燕娥. 永磁式力矩器的优化设计. 东南大学学报, 1998, 28(6): 155-158.
[7] McKelvie B, Galt H. The evolution of the ship's inertial navigation system for the fleet Ballistic missile program. Journal of the Institute of Navigation, 1978, 25(3): 310-322.
[8] Wang H G,Williams T C. Strategic inertial navigation systems. High-accuracy inertially stabilized platforms for hostile environments. IEEE Control Systems Magazine, 2008: 65-84.
[9] Kaiser K W. Temperature control of the inertial-grade floated rate-integrating gyroscope. IEEE Transactions on Automatic Control, 1970, AC-15(5): 521-529.
[10] Zhang T, Zhang L, Zhang Y, et al. Research on the application of FMMEA in diesel. Journal of Engineering Graphics, 2009(6): 15-21. (in Chinese) 张彤, 张良, 张彧, 等. FMMEA在柴油发动机上的应用研究. 工程图学学报, 2009(6): 15-21.
[11] Xiong W. Flexible gyro and accelerometer temperature characteristics of the model and error compensation. Xi'an: School of Automation, Northwestern Polytechnical University, 2006. (in Chinese) 熊伟. 挠性陀螺和加速度计温度特性模型研究及误差补偿技术. 西安: 西北工业大学自动化学院, 2006.
[12] Guo J Q, Tian L, Zhang Y, et al. Prediction models and methodology of stress relaxation property from creep data. Journal of Mechanical Strength, 2011, 33(5): 685-689. (in Chinese) 郭进全, 田龙, 张勇, 等. 基于蠕变数据的应力松弛行为预测模型与方法. 机械强度, 2011, 33(5): 685-689.
[13] Zheng C L, Chen J R, Yuan B, et al. Finite element analysis of adhesive bonded structures considering the creep behaviour of the adhesive. Journal of Astronautics, 1996, 17(4): 62-66. (in Chinese) 郑长良, 陈洁然, 袁彪, 等. 考虑胶层蠕变行为的胶接结构有限元分析. 宇航学报, 1996, 17(4): 62-66.
[14] Peng Y D, Yi J H, Li L Y, et al. Effect of sintering temperature on the magnetic properties of high coercivity Sm2(Co,Fe,Cu,Zr)17 permanent magnets. Powder Metallurgy Technology, 2003, 21(1): 27-30. (in Chinese) 彭元东, 易健宏, 李丽娅, 等. 烧结温度对高矫顽力Sm2(Co,Fe,Cu,Zr)17永磁体磁性能的影响. 粉末冶金技术, 2003, 21(1): 27-30.
[15] Zhou B L. Design and manufacture of DTG. Nanjing: Southeast University Press, 2002: 107-130. (in Chinese) 周百令. 动力调谐陀螺仪设计与制造. 南京: 东南大学出版社, 2002: 107-130.
/
〈 | 〉 |