流体力学与飞行力学

基于再入轨迹和气动热环境的返回舱烧蚀研究

  • 王俊 ,
  • 裴海龙 ,
  • 王乃洲
展开
  • 1. 华南理工大学 自主系统与网络控制教育部重点实验室, 广东 广州 510640;
    2. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
王俊 男,博士研究生。主要研究方向:航天器的再入飞行控制和空气动力学。Tel:020-87113594 E-mail:jwangsunny@gmail.com;裴海龙 男,博士,教授,博士生导师。主要研究方向:空气动力学与飞行控制。Tel:020-87113594 E-mail:auhlpei@scut.edu.cn;王乃洲 男,博士研究生。主要研究方向:飞行器的模型以及抗饱和优化控制算法。Tel:020-87113594 E-mail:wangnzhou@sina.com

收稿日期: 2013-02-14

  修回日期: 2013-03-11

  网络出版日期: 2013-03-19

基金资助

国家自然科学基金(61174053);高等学校博士学科点专项科研基金(20100172110023)

Research on Ablation for Crew Return Vehicle Based on Re-entry Trajectory and Aerodynamic Heating Environment

  • WANG Jun ,
  • PEI Hailong ,
  • WANG Naizhou
Expand
  • 1. Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, South China University of Technology, Guangzhou 510640, China;
    2. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China

Received date: 2013-02-14

  Revised date: 2013-03-11

  Online published: 2013-03-19

Supported by

National Natural Science Foundation of China (61174053);Research Fund for the Doctoral Program of Higher Education of China (20100172110023)

摘要

针对再入全过程合理预测热防护罩表面材料烧蚀深度和温度的动态变化问题,提出融合再入轨迹、气动热以及Newton-Raphson和三对角矩阵算法(TDMA)构建动态烧蚀的方法。该方法建立直入式和跳跃式三自由度再入轨迹,应用修正的牛顿流体理论估算气动参数,以及修正的Fay-Riddell和Sutton-Grave理论计算驻点区域的热流密度,利用一维非线性热传导方程模拟了热防护材料的烧蚀过程。仿真结果表明:此方法实现了再入全过程热防护材料烧蚀深度和温度连续动态变化的预测,同样适用于更为复杂结构飞行器的动态烧蚀预测,与热平衡积分法(HBI)相比其结果可靠合理,为进一步优化热防护系统(TPS)提供了一定的参考依据。

本文引用格式

王俊 , 裴海龙 , 王乃洲 . 基于再入轨迹和气动热环境的返回舱烧蚀研究[J]. 航空学报, 2014 , 35(1) : 80 -89 . DOI: 10.7527/S1000-6893.2013.0167

Abstract

The ablation of a heat shield subjected to dynamic changes of the surface material depth and temperature can be reasonably predicted in the whole re-entry process. The approach of constructing a dynamic ablation process is presented by combining the reentry trajectory and aerodynamic heat with Newton-Raphson and tridiagonal matrices (TDMA) algorithms. A three degrees of freedom direct and skip re-entry trajectory model is established. The modified Newtonian flow theory,Fay-Riddell and Sutton-Grave theory are adopted to calculate respectively the aerodynamic parameters and stagnation heat flux. A one dimensional nonlinear heat conduction model is employed to simulate the process of thermal protective material ablation. The results of ablation prediction demonstrate that continuous dynamic change of the surface material depth and the temperature can be realized. The proposed method can be applied to more complicated structures of the flight vehicles and the results of it are shown to be reliable and reasonable by comparing them with those of the heat balance integral (HBI) method. This study provides a reference for further optimization of the design of thermal protection systems (TPS).

参考文献

[1] Greathouse J S, Kirk B S, Lillard R P, et al. Crew exploration vehicle (CEV) crew module shape selection and CEV aeroscience project overview, AIAA-2007-0603[R]. Reston: AIAA, 2007.
[2] Berry S A, Horvath T J, Lillard R P, et al.Aerothermal testing for project orion crew exploration vehicle, AIAA-2009-3842[R]. Reston: AIAA, 2009.
[3] Wu Z Q, Cheng H, Zhang W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 334-342.(in Chinese) 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334-342.
[4] Robinson J S, Wurster K E, Mills J C. Entry trajectory and aeroheating environment definition for capsule-shaped vehicles[J]. Journal of Spacecraft and Rockets, 2009, 46(1): 74-86.
[5] Engel C D, Praharaj S C. MINIVER upgrade for the AVID system, vol. I: LANMIN user's manual[R]. NASA CR-172212, 1983.
[6] Subrahmanyam P. High-fidelity aerothermal engineering analysis for planetary probes using DOTNET framework and OLAP cubes database[J]. International Journal of Aerospace Engineering, 2009(1): 1-21.
[7] Otero R E, Braun R D. The planetary entry systems synthesis tool: a conceptual design and analysis tool for EDL systems[C]//2010 IEEE Aerospace Conference, 2010: 1-16.
[8] Park C. Stagnation-region heating environment of the Galileo probe[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 417-424.
[9] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill, 1989: 156-168.
[10] Wright M, Loomis M, Padadopoulos P. Aerothermal analysis of the project fire Ⅱ afterbody flow, AIAA-2001-3065[R]. Reston: AIAA, 2001.
[11] Bertin J J. Hypersonic aerothemodynamics[M]. Washington: AIAA, 1994: 231-267.
[12] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 2(25): 73-85.
[13] Milos F S, Chen Y K. Ablation predictions for carbonaceous materials using CEA and JANNAF-based species thermodynamics[C]//42th AIAA Thermophysics Conference, 2011: 3123-3139.
[14] Potts R L. Application of integral methods to ablation charring erosion, a review[J]. Journal of Spacecraft and Rockets, 1995, 32(2): 200-209.
[15] Hu R F, Wu Z N, Qi X, et al. Debris reentry and ablation prediction and ground risk assessment software system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 390-399. (in Chinese) 胡锐锋, 吴子牛, 曲溪, 等. 空间碎片再入烧蚀预测与地面安全评估软件系统[J]. 航空学报, 2011, 32(3): 390-399.
[16] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species sir model for chemical and thermal non-equilibrium calculations to 300 000 K[R]. NASA RP-1232, 1990.
[17] Park C, Lee S H. Validation of multi-temperature nozzle flow code noznt[R]. AIAA-1993-2862, 1993.
[18] Quinn R D, Gong L. Real time aerodynamic heating and surface temperature calculations for hypersonic flight simulation[R]. NASA TM-4222, 1990.
[19] Spalding D B. Convective mass transfer[M]. New York: McGraw-Hill, 1963: 156-168.
[20] Milos F S, Rassky D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 24-34.
[21] Potts R L. On heat integral solutions of carbonaceous ablator response during re-entry, AIAA-1984-1677[R]. Reston: AIAA, 1984.
[22] Arpaci V S. Conduction heat transfer[M]. Palo Alto: Addison-Wesely, 1966: 248-257.
文章导航

/