流体力学与飞行力学

基于蒸气压缩制冷循环的便携式微环境冷却系统研究

  • 杨宇飞 ,
  • 袁卫星 ,
  • 杨波 ,
  • 廖翼兵
展开
  • 1. 北京航空航天大学 航空科学与工程学院 人机工效与环境控制国防重点学科实验室, 北京 100191;
    2. 中航工业航宇救生装备有限公司 特种装备部, 湖北 襄阳 441000
杨宇飞 男,博士研究生。主要研究方向:飞行器环境控制、制冷、太阳能利用。 Tel:010-82338976 E-mail:yufei@ase.buaa.edu.cn;袁卫星 男,博士,副教授。主要研究方向:飞行器环境控制、制冷、太阳能利用。 Tel:010-82338878 E-mail:yuanwx@buaa.edu.cn

收稿日期: 2013-01-18

  修回日期: 2013-03-18

  网络出版日期: 2013-03-19

基金资助

中航工业创新基金

Study of a Portable Microclimate Cooling System Based on Vapor Compression Refrigeration Cycle

  • YANG Yufei ,
  • YUAN Weixing ,
  • YANG Bo ,
  • LIAO Yibing
Expand
  • 1. National Defense Key Discipline Laboratory of Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. Department of Special Equipment, AVIC Xiangyang Aerospace Life-Support Industries Co., Ltd., Xiangyang 441000, China

Received date: 2013-01-18

  Revised date: 2013-03-18

  Online published: 2013-03-19

Supported by

AVIC Innovation Fund

摘要

成功研制开发了一种用于在高温环境下对人体进行降温的便携式微环境制冷系统,以解决直升机、军用车辆等乘员在高温环境下的热应激问题。该冷却系统采用蒸气压缩循环,以R134a为制冷工质,外型尺寸仅为190 mm×190 mm×100 mm,重量为2.75 kg,采用锂电池或直流电源供电。该系统使用了全新的微型直流调速压缩机和以脉宽调制模式工作的微型电子膨胀阀(EXV)。研制了微型微通道板翅式蒸发器,并设计了全铝钎焊微通道平行流式冷凝器。通过采用以上微型、高效部件,成功实现了蒸气压缩循环制冷的微型化和实用化。对该微环境冷却系统进行了定容量和变容量性能实验,研究了制冷剂充注量和EXV的占空比对制冷性能的影响。实验结果表明:该微环境冷却系统在45 ℃环境温度、制取20 ℃冷水条件下,具有260 W的制冷量,可以满足单个乘员在高负荷工作条件下的冷却需求。在充注量为120 g和EXV占空比为45%时,系统的制冷性能系数(COP)最高可达1.5以上。

本文引用格式

杨宇飞 , 袁卫星 , 杨波 , 廖翼兵 . 基于蒸气压缩制冷循环的便携式微环境冷却系统研究[J]. 航空学报, 2013 , 34(11) : 2500 -2509 . DOI: 10.7527/S1000-6893.2013.0171

Abstract

A man-portable microclimate cooling system for personal cooling in high temperature circumstances is developed to solve the heat stress problems for helicopter and armored vehicle crewmen. The system is based on a vapor compression refrigeration cycle and the refrigerant used is R134a. The dimensions of the system are 190 mm× 190 mm× 100 mm and the weight is only 2.75 kg. It can be powered by a lithium ion battery or with DC power supply. It utilizes a new miniature DC compressor and a miniature electronic expansion valve (EXV) which operates in a pulse width modulation mode. A miniature microchannel plate type evaporator is developed and an aluminum microchannel condenser is applied. By utilizing the above components of small scale and high efficiency, the whole system realize the miniaturization and practicality of vapor compression refrigeration systems. Experiments are carried out in both fixed and variable speed modes to investigate the effects of EXV duty cycle and refrigerant charge amount on the cooling performance. The results show that the system has a cooling capacity of 260 W under the ambient temperature of 45 ℃ and water temperature of 20 ℃, which is sufficient for cooling one person under a high work load. And the cooling coefficient of performance (COP) reaches highest when the EXV operates at 45% of its duty cycle with a refrigerant charge amount of 120 g.

参考文献

[1] Hancock P A,Vercruyssen M.Limits of behavioral efficiency for workers in heat stress.International Journal of Industrial Ergonomics,1988,3(2): 149-158.

[2] Hancock P A,Vasmatzidis I.Effects of heat stress on cognitive performance: the current state of knowledge.International Journal of Hyperthermia,2003,19(3): 355-372.

[3] Cheung S S.Neuromuscular response to exercise heat stress.Medicine and Sport Science,2008,53: 39-60.

[4] Nybo L.Exercise and heat stress: cerebral challenges and consequences.Progress in Brain Research,2007,162: 29-43.

[5] Kong F K,Liu F.Military vehicle application engineering.Beijing: National Defense Industry Press,1993: 368-369.(in Chinese) 孔繁柯,刘馥.军用车辆运用工程.北京: 国防工业出版社,1993: 368-369.

[6] Singh A P,Majumdar D,Bhatia M R,et al.Environmental impact on crew of armoured vehicles: effects of 24 h combat exercise in a hot desert.International Journal of Biometeorology,1995,39(2): 64-68.

[7] Hanna M.LAV Ⅲ climate room solar testing.National Research Council Task Report 54-A5027,2006.

[8] Havenith G,Hartog E D,Martini S.Heat stress in chemical protective clothing: porosity and vapour resistance.Ergonomics,2011,54(5): 497-507.

[9] Guo X M,Yuan X G.Heat stress problem and solution of tank & armored vehicle crewmen.Acta Armamentarii,2009,30(11): 1527-1532.(in Chinese) 郭新梅,袁修干.坦克、装甲车乘员热应激问题的解决方案.兵工学报,2009,30(11): 1527-1532.

[10] Speckman K L,Allan A E,Sawka M N.Perspectives in microclimate cooling involving protective clothing in hot environments.International Journal of Industrial Ergonomics,1988,3(2): 121-147.

[11] Vallerand A,Michas R,Frim J,et al.Heat balance of subjects wearing protective clothing with a liquid-or air-cooled vest.Aviation,Space,and Environmental Medicine,1991,62(5): 383-391.

[12] McLellan T M,Frim J,Bell D G.Efficacy of air and liquid cooling during light and heavy exercise while wearing nbc clothing.Aviation,Space,and Environmental Medicine,1999,70(8): 802-811.

[13] Yang Y,Stapleton J,Diagne B T,et al.Man-portable personal cooling garment based on vacuum desiccant cooling.Applied Thermal Engineering,2012,47: 18-24.

[14] Hunter I,Hopkins J T,Casa D J.Warming up with an ice vest: core body temperature before and after cross-country racing.Journal of Athletic Training,2006,41(4): 371-374.

[15] Sarier N,Onder E.Organic phase change materials and their textile applications: an overview.Thermochimica Acta,2012,540(20): 7-60.

[16] Cotter J D,Sleivert G G,Roberts W S,et al.Effect of pre-cooling,with and without thigh cooling,on strain and endurance exercise performance in the heat.Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology,2001,128(4): 667-677.

[17] Gu X Q.A status report on research of passvie cooling vests on US Navy ships.Navy Medicine Magzine,2004,26(6): 191-193.(in Chinese) 顾心清.美海军舰艇被动式降温背心的研究现状.海军医学杂志,2004,26(6): 191-193.

[18] Wu Y T,Ma C F,Zhong X H.Development and experimental investigation of a miniature-scale refrigeration system.Energy Conversion and Management,2010,51(1): 81-88.

[19] Elbel S,Bowers C D,Zhao H,et al.Development and analysis of miniature vapor compression cooling technology.23rd International Congress of Refrigeration (ICR2011),2011.

[20] Drost M K,Friedrich M.Miniature heat pumps for portable and distributed space conditioning applications.AIChE 1997 Spring National Meeting,1997.

[21] Sathe A A,Groll E A,Garimella S V.Experimental evaluation of a miniature rotary compressor for application in electronics cooling.International Compressor Engineering Conference at Purdue,2008.

[22] Brandner J J,Anurjew E,Bohn L,et al.Concepts and realization of microstructure heat exchangers for enhanced heat transfer.Experimental Thermal and Fluid Science,2006,30(8): 801-809.

[23] Chang Y P,Tsai R,Hwang J W.Condensing heat transfer characteristics of aluminum flat tube.Applied Thermal Engineering,1997,17(11): 1055-1065.

[24] Kim M H,Bullard C W.Air-side thermal hydraulic performance of multi-louvered fin aluminium heat exchangers.International of Journal of Refrigeration,2002,25(3): 390-400.

[25] Wang W W,Radcliff T D,Christensen R N.A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition.Experimental Thermal and Fluid Science,2002,26(5): 473-485.

[26] ASHRAE.Standard 41.2-1987 Standard methods for laboratory airflow measurement.Atlanta: ASHRAE,1992.

文章导航

/