采用新型基准流场的高超内收缩进气道试验研究
收稿日期: 2013-01-21
修回日期: 2013-03-05
网络出版日期: 2013-03-11
基金资助
国家自然科学基金(90916029)
Experimental Study of Hypersonic Inward Turning Inlets with Innovative Basic Flowfiled
Received date: 2013-01-21
Revised date: 2013-03-05
Online published: 2013-03-11
Supported by
National Natural Science Foundation of China (90916029)
由于新型变中心体基准流场具有压缩效率高、反射激波弱的优点,采用该基准流场设计了矩形转圆形内收缩进气道,在设计点马赫数Ma=6.0进行了风洞试验研究。试验中得到了进气道压缩面的沿程压力分布、隔离段出口皮托压分布等参数。通过和数值模拟对比分析,结果表明:进气道外压段的压力分布明显具有先增大后减小的特征,内压段的压力分布具有两级爬升的特点,且压升较小,流场结构较好。由于内压段流场激波强度弱,进气道总压恢复系数较高,达0.518,并产生了52倍的增压比,其抗反压能力在144倍以上。试验研究表明,采用新型变中心体基准流场能改善矩形转圆形内收缩进气道的内压段流场及隔离段流场,并能有效提高进气道的总压恢复系数。
南向军 , 张堃元 , 金志光 . 采用新型基准流场的高超内收缩进气道试验研究[J]. 航空学报, 2014 , 35(1) : 90 -96 . DOI: 10.7527/S1000-6893.2013.0159
The innovative basic flowfield with curved centre body has high pressure efficiency and weak reflected shock, so a hypersonic inward turning inlet with rectangular to circular shape transition is designed with this kind of basic flowfield and tested at design point Mach 6.0 in a hypersonic wind tunnel. The pressure distributions on top wall and cowl wall and the parameters distribution at isolator exit is obtained in this experiment. The results of experiment and numerical simulation turn out the pressure gradient increasing at initial part, then deceasing, and the pressure distribution in internal part has characteristics of two-pressure-rise, and the pressure rise is low, so the flowfield of internal part is good. Because the shock in the internal part of inlet is weak, the inlet has high pressure recovery coefficient, about 0.518, and generates a compression ratio of 52. The critical back pressure ratio of this inlet is above 144. The innovative basic flowfield can improve the flowfield of internal part and isolator and increase the pressure recovery of the inlet with rectangular to circular shape transition.
[1] Lezberg E A, Metzler A J, Pack W D. In-stream measurements of combustion during Mach 5 to 7 tests of the hypersonic research engine (HRE), AIAA-1993-2324[R]. Reston: AIAA, 1993.
[2] Voland R T, Auslende A H, Smart M K. CIAM/NASA Mach 6.5 scramjet flight and ground test, AIAA-1999-4848[R]. Reston: AIAA, 1999.
[3] Cockrell C E, Auslender A H, Jr., White J A. Aeroheating predictions for the X-43 cowl-closed configuration at Mach 7 and 10, AIAA-2002-0218[R]. Reston: AIAA, 2002.
[4] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program, AIAA-2008-2540[R]. Reston AIAA, 2008.
[5] Pan J, Zhang K Y, Jin Z G. Design and numerical investigation of curved check shock compression surface[J]. Journal of Propulsion Technology, 2008, 29(4): 438-442.(in Chinese) 潘瑾, 张堃元, 金志光. 弯曲激波压缩型面的设计及数值分析[J]. 推进技术, 2008, 29(4): 438-442.
[6] Trexler C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft, 1974, 11(9): 589-591.
[7] Hiraiwa T, Kanda T, Mitani T, et al. Experiments on a scramjet engine with ramp-compression inlet at Mach 8 condition, AIAA-2002-4129[R]. Reston: AIAA, 2002.
[8] Mölder S, Szpiro J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304.
[9] Sun B, Zhang K Y, Jin Z G, et al. Selection of design parameters for streamtraced hypersonic Busemann inlets[J]. Journal of Propulsion Technology, 2007, 28(1): 55-59. (in Chinese) 孙波, 张堃元, 金志光, 等.流线追踪 Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1): 55-59.
[10] Vijay R, Lewis M, Starkey R. Performance of various truncation strategies employed on hypersonic Busemann inlets, AIAA-2009-7249[R]. Reston: AIAA, 2009.
[11] Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition, AIAA-1998-0960[R]. Reston: AIAA, 1998.
[12] Smart M K, Trexler C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-elliptical shape transition, AIAA-2003-0012[R]. Reston: AIAA, 2003.
[13] Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake, AIAA-2005-3379[R]. Reston: AIAA, 2005.
[14] Nan X J, Zhang K Y, Jin Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-522.(in Chinese) 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-522.
[15] Nan X J, Zhang K Y, Jin Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996. (in Chinese) 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6): 988-996.
[16] Nan X J, Zhang K Y. Analysis of hypersonic inward turning inlets with innovative axisymmetric basic flowfield[J]. Journal of Astronautics, 2012, 33(2):254-259. (in Chinese) 南向军, 张堃元. 采用新型基准流场高超内收缩进气道性能分析[J]. 宇航学报, 2012, 33(2): 254-259.
[17] Nan X J, Zhang K Y. Numerical and experimental investigation on hypersonic inward turning inlets with basic flowfield using arc tangent curve law of pressure rise, AIAA-2011-2270[R]. Reston: AIAA, 2011.
/
〈 | 〉 |