流体力学与飞行力学

基于径向基函数的网格变形及非线性气动弹性时域仿真研究

  • 谢亮 ,
  • 徐敏 ,
  • 安效民 ,
  • 蔡天星 ,
  • 陈韦贤
展开
  • 1. 西北工业大学 航天学院, 陕西 西安 710072;
    2. 上海机电工程研究所, 上海 201109
谢亮,男,博士研究生。主要研究方向:计算流体力学与计算气动弹性力学。Tel:029-88494614,E-mail:jjccblws02@163.com;徐敏,女,博士,教授,博士生导师。主要研究方向:气动弹性力学、多力学场耦合问题。Tel:029-88494614,E-mail:xumin@nwpu.edu.cn;安效民,男,博士,讲师。主要研究方向:非线性气动弹性力学。Tel:029-88494614,E-mail:frank805@nwpu.edu.cn;蔡天星,男,博士,工程师。主要研究方向:飞行器气动弹性力学Tel:021-24185234,E-mail:star.cai@163.com;陈韦贤,男,硕士研究生。主要研究方向:非线性气动弹性问题。Tel:029-88494614,E-mail:378673941@qq.com

收稿日期: 2012-12-19

  修回日期: 2013-02-02

  网络出版日期: 2013-03-04

基金资助

国家自然科学基金(90816008, 11202165)

Research of Mesh Deforming Method Based on Radial Basis Functions and Nonlinear Aeroelastic Simulation

  • XIE Liang ,
  • XU Min ,
  • AN Xiaomin ,
  • CAI Tianxing ,
  • CHEN Weixian
Expand
  • 1. College of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China

Received date: 2012-12-19

  Revised date: 2013-02-02

  Online published: 2013-03-04

Supported by

National Natural Science Foundation of China (90816008, 11202165)

摘要

为开展非线性气动弹性研究,基于非线性结构有限元软件NASTRAN和自主研制的多块结构化计算流体力学(CFD)求解器,开发了一套基于计算流体力学/计算结构动力学(CFD/CSD)耦合求解方法的气动弹性时域仿真程序。该程序采用径向基函数(RBF)交换两套求解器之间的数据并进行网格变形。为提高RBF方法的效率,构造了基于多次插值的空间待插值点精简算法。在多次插值过程中,每次插值的对象为上次插值的误差,并同时限制插值区域,以此实现了空间待插值网格数的精简。数个网格变形的算例表明该方法可支持大变形运动,并且具有较高的计算效率。采用此程序开展了AGARD 445.6机翼颤振计算、大展弦比机翼的静气动弹性计算与切尖三角翼极限环振荡(LCO)现象的动气动弹性仿真,结果揭示了当机翼展弦比较大或者响应幅值较大时,结构非线性对于气动弹性有显著影响。

本文引用格式

谢亮 , 徐敏 , 安效民 , 蔡天星 , 陈韦贤 . 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013 , 34(7) : 1501 -1511 . DOI: 10.7527/S1000-6893.2013.0122

Abstract

To carry out research of nonlinear aeroelasticity, this paper presents a nonlinear time-domain aeroelastic simulation program which adopts computational fluid dynamics/computational structural dynamics (CFD/CSD) couple method. The program couples the nonlinear structural finite element software NASTRAN with a multi-block structured grid-based CFD solver developed by myself. Radial basis function (RBF) is used to transfer information between the two solvers and deform grid. To improve the efficiency of the RBF method, a space point reduction algorithm based on multi-level interpolation is constructed. For the purpose of reducing the number of space points, the interpolation object of each interpolation step is the error of previous step, and interpolation region is limited simultaneously. Results of some mesh deformation examples show that this way can support the movement of large deformation with high computational efficiency. With the use of this program, flutter computation of AGARD 445.6 wing is completed, static aeroelastic computation of a wing with a large aspect ratio is performed and a dynamic aeroelastic simulation of limit-cycle-oscillation (LCO) of a cropped delta wing is carried out. Results demonstrate that structural nonlinearity has strong influences on aeroelastic phenomenas when the aspect ratio of the wing is large or the amplitude of response is great.

参考文献

[1] Liu F. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft, 2001, 38(2): 334-342.

[2] Lee-Rausch E M, Batina J T. Calculation of AGARD wing 445.6 flutter using Navier-Stokes aerodynamics. AIAA-1993-3476, 1993.

[3] An X M, Xu M. An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 97-104. (in Chinese) 安效民, 徐敏. 一种几何大变形下的非线性气动弹性求解方法. 力学学报, 2011, 43(1): 97-104.

[4] Schairer E T, Hand L A. Measurement s of unsteady aeroelastic model deformation by stereo photogram-metry. Journal of Aircraft, 1999, 36(6): 1033-1040.

[5] Attar P J, Gordnier R E. Aeroelastic prediction of the limit cycle oscillations of a cropped delta wing. Journal of Fluids and Structures, 2006, 22(1): 45-58.

[6] Cui P, Han J L. Aeroelastic simulation of limit cycle-oscillation of a cropped delta wing. Acta Aeronautica et Astronaut Sinica, 2010, 31(12): 2296-2301. (in Chinese) 崔鹏, 韩景龙. 切尖三角翼极限环振荡的气动弹性模拟. 航空学报, 2010, 31(12): 2296-2301.

[7] An X M, Xu M, Chen S L. An overview of CFD/CSD coupled solution for nonlinear aeroelasticity. Advances in Mechanics, 2009, 29(3): 284-298. (in Chinese) 安效民, 徐敏, 陈士橹. 多场耦合求解非线性气动弹性的研究综述. 力学进展, 2009, 29(3): 284-298.

[8] Ren Y S, Liu L H, Han J L, et al. Advances in nonlinear aeroelasticity study and active flutter suppression of aircraft. Chinese Quarterly of Mechanics, 2003, 24(4): 534-540.(in Chinese) 任勇生, 刘立厚, 韩景龙, 等. 飞行器非线性气动弹性和颤振主动控制研究进展. 力学季刊, 2003, 24(4): 534-540.

[9] Li J, Huang S Z, Jiang S J, et al. Unsteady viscous flow simulations by a fully implicit method with deforming grid. AIAA-2005-1221, 2005.

[10] Zhang J, Tan J J, Chu J, et al. New method for generating unstructured moving grids. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(5): 633-636. (in Chinese) 张军, 谭俊杰, 褚江, 等. 一种新的非结构动网格生成方法. 南京航空航天大学学报, 2007, 39(5): 633-636.

[11] Liu J, Bai X Z, Guo Z. Unstructured grid moving method and its application for the simulation of flow with moving interface.Changsha: National University of Defence Technology Press, 2009: 81-94. (in Chinese) 刘君, 白晓征, 郭正. 非结构动网格计算方法-及其在包含运动界面的流场模拟中的应用. 长沙:国防科学技术大学出版社, 2009: 81-94.

[12] Huo S H, Wang F S, Yue Z F. Spring analogy method for generating of 2D unstructured dynamic meshes. Journal of Vibration and Shock, 2011, 20(10): 177-182. (in Chinese) 霍世慧, 王富生, 岳珠峰. 弹簧近似法在二维非结构动网格生成技术中的应用. 振动与冲击, 2011, 20(10): 177-182.

[13] Wu Y Z, Tian S L, Xia J. Unstructured grid methods for unsteady flow simulation. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 15-26. (in Chinese) 伍贻兆, 田书铃, 夏键. 基于非结构动网格的非定常数值模拟方法. 航空学报, 2011, 32(1): 15-26.

[14] Rendall T C S, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms. Journal of Computational Physics, 2009, 228(7): 6231-6249.

[15] Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions. Journal of Computational Physics, 2010, 229(8): 2810-2820.

[16] Wang G, Lei B Q, Ye Z Y, An efficient deformation technique for hybrid unstructured grid using radial basis functions. Journal of Northwestern Polytechnical University, 2011, 29(5): 783-788. (in Chinese) 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术. 西北工业大学学报, 2011, 29(5): 783-788.

[17] Michler A K. Aircraft control surface deflection using RBF-based mesh deformation. International Journal for Numerical Methods in Engineering, 2011, 88(10): 986- 1007.

[18] Beckert A, Wendland H. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology, 2001, 5(2): 125-134.

[19] Boer A D, Schoot M S, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures, 2007, 85(11): 784-795.

[20] Rendall T C S, Allen C B. Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors. International Journal for Numerical Methods in Engineering, 2010, 81(1): 89-105.

[21] Xie L. Development of aeroelastic simulation software based on CFD. Xi’an: College of Aeronautics, Northwestern Polytechnical University, 2012. (in Chinese) 谢亮. 基于CFD的气动弹性时域仿真软件开发初步研究. 西安: 西北工业大学航空学院, 2012.

[22] Zeng X A. Studies of model reduction technique for aeroelastic. Xi’an: College of Astronautics, Northwestern Polytechnical University, 2008.(in Chinese) 曾宪昂. 模型降阶技术在气动弹性中的应用研究. 西安: 西北工业大学航天学院, 2008.

[23] MSC, Inc. MSC.NASTRAN reference manual. Wisconsin Rapids, USA: MSC.Inc, 2004: 342-346.

[24] Yates E C. AGARD standard aeroelastic configurations for dynamic response I-wing 445.6. The 61st Meeting of the Structures and Materials Panel. Oberammergu, Germany: NATO Science and Technology Organization, 1985: 1-85.

文章导航

/