活塞理论气动力静压修正方法及其在曲壁板颤振分析中的应用
收稿日期: 2012-09-14
修回日期: 2013-01-21
网络出版日期: 2013-03-01
基金资助
国家自然科学基金(11072198,11102162);高等学校学科创新引智计划(B07050)
Static Pressure Modification for Piston Theory Aerodynamics and Its Application to the Analysis of Curved Panel Flutter
Received date: 2012-09-14
Revised date: 2013-01-21
Online published: 2013-03-01
Supported by
National Natural Science Foundation of China (11072198,11102162);111 Project of China (B07050)
提出了一种采用计算流体力学(CFD)计算的压力分布对活塞理论气动力进行静压修正的方法,将该方法应用到曲壁板的静气动弹性变形及颤振稳定性分析中,并与采用曲率修正活塞理论气动力的计算结果进行了对比。分析结果表明,采用本文提出的活塞理论气动力静压修正方法进行曲壁板的气动弹性分析,在圆柱曲壁板曲率较小的情况下,与采用曲率修正活塞理论气动力方法得到的静气动弹性变形、稳定性边界差别不大;而在曲率较大时,采用本文方法计算得到的曲壁板静气动弹性变形,其曲壁板靠近前缘部分被压的更低,而曲壁板的颤振稳定性边界更小,且这种差别随着圆柱曲壁板曲率的增加而不断增大。该方法突破了曲率修正活塞理论的小曲率限制,扩大了活塞理论气动力在曲壁板颤振分析中的适用范围。
周建 , 杨智春 , 贺顺 . 活塞理论气动力静压修正方法及其在曲壁板颤振分析中的应用[J]. 航空学报, 2013 , 34(7) : 1512 -1519 . DOI: 10.7527/S1000-6893.2013.0113
A modification method is proposed for piston theory aerodynamics of a curved panel using its static pressure calculated by computational fluid dynamics (CFD). This static pressure modified piston theory aerodynamics is then applied to the analysis of the static aeroelastic deformation and flutter stability of a cylindrically curved panel. A comparison is made between the results obtained using the existing curvature modified piston theory aerodynamics and the present static pressure modified piston theory aerodynamics, which shows that when the curvature of a curved panel is small, the static aeroelastic deformations and flutter stability boundaries obtained by both methods demonstrate little difference, while for a curved panel with a large curvature, the region near the leading edge which is pressed lower by the present method is larger and the flutter stability boundary is smaller as compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature. The proposed method breaks through the small curvature limitation of the existing curvature modified method and enlarges the application range of piston theory in the flutter analysis of curved panels.
[1] Garrick I E, Reed Ⅲ W H. Historical development of aircraft flutter. Journal of Aircraft, 1981, 18(11): 897-912.
[2] Ong C C. Flutter of a heated shield panel. NASA-CR-122855, BELLCOMM Inc. TM-71-1013-6, 1971.
[3] Mei C,Abdel-Motagaly K,Chen R. Review of nonlinear panel flutter at supersonic and hypersonic speeds. Applied Mechanics Reviews, 1999, 52(10): 321-332.
[4] Cheng G F, Mei C. Finite element modal formulation for hypersonic panel flutter analysis with thermal effects. AIAA Journal, 2004, 42(4): 687-695.
[5] Yang Z C, Xia W. Analytical models, numerical solutions and advances in the study of panel flutter. Advances in Mechanics, 2010, 40(25): 81-98.(in Chinese) 杨智春, 夏巍. 壁板颤振的分析模型、数值求解方法和进展. 力学进展, 2010, 40(25): 81-98.
[6] Yuan K H, Qiu Z P. Thermal flutter analysis of composite panel with uncertain parameters. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 119-124.(in Chinese) 苑凯华, 邱志平. 含不确定参数的复合材料壁板热颤振分析. 航空学报, 2010, 31(1): 119-124.
[7] Dowell E H. Nonlinear flutter of curved plates. AIAA Journal, 1969, 7(3): 424-431.
[8] Dowell E H. Panel flutter: a review of the aeroelastic stability of plates and shells. AIAA Journal, 1970, 8(3):385-399.
[9] Azzouz M S. Nonlinear flutter of curved panels under yawed supersonic flow using finite elements. Norfolk, Virginia: Mechanical Engineering Department, Old Dominion University, 2005.
[10] Ghoman S, Azzouz M S. Supersonic aerothermoelastic nonlinear flutter study of curved panels: frequency domain. Journal of Aircraft, 2012, 49(4): 1075-1090.
[11] Ghoman S,Azzouz M S. Supersonic aerothermoelastic nonlinear flutter study of curved panels: time domain. Journal of Aircraft, 2012, 49(4): 1179-1183.
[12] Amabili M, Pellicano F. Nonlinear supersonic flutter of circular cylindrical shells. AIAA Journal, 2001, 39(4): 564-573.
[13] Hosseini M, Fazelzadeh A. Marzocca P. Chaotic and bifurcation dynamic behavior of functionally graded curved panels under aero-thermal loads. International Journal of Bifurcation and Chaos, 2011, 21(3): 931-954.
[14] Krause H, Dinkler D. The influence of curvature on supersonic panel flutter. AIAA-1998-1841, 1998.
[15] Yang Z C, Zhang R L. Analysis of panel thermal flutter using maximum lyapunov exponent. Journal of Northwestern Polytechnical University, 2009, 27(6): 770-776.(in Chinese) 杨智春, 张蕊丽. 基于最大李雅普诺夫指数的壁板热颤振特性分析. 西北工业大学学报, 2009, 27(6): 770-776.
[16] Yang Z C, Zhou J, Gu Y S. Nonlinear thermal flutter of heated curved panels in supersonic air flow. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 30-38.(in Chinese) 杨智春, 周建, 谷迎松. 超音速气流中受热曲壁板的非线性颤振特性. 力学学报, 2012, 44(1): 30-38.
/
〈 | 〉 |