固体力学与飞行器总体设计

基于锥形压入的材料力学性能测试方法研究

  • 姚博 ,
  • 蔡力勋 ,
  • 包陈
展开
  • 西南交通大学 力学与工程学院, 四川 成都 610031
姚博 男,硕士研究生。主要研究方向:材料力学性能测试。Tel:028-87600850 E-mail:lixue05-116@163.com;蔡力勋 男,教授,博士生导师。主要研究方向:实验固体力学,材料本构关系,疲劳与断裂力学 Tel:028-87600850 E-mail:lix_cai@263.net

收稿日期: 2012-10-19

  修回日期: 2012-12-31

  网络出版日期: 2013-02-20

基金资助

国家自然科学基金(11072205)

Research on Acquisition of Mechanical Properties of Materials Based on Conical Indentation

  • YAO Bo ,
  • CAI Lixun ,
  • BAO Chen
Expand
  • School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Received date: 2012-10-19

  Revised date: 2012-12-31

  Online published: 2013-02-20

Supported by

National Natural Science Foundation of China(11072205)

摘要

通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分析(EPFEA),揭示了不同锥角的锥形压头其压入能量比与屈服应力之间存在线性关系,提出了基于能量原理预测金属材料本构关系部分关键参数(弹性模量、屈服应力和硬化指数)的CR-EMI (Constitutive Relationship based on Energy Method of Indentation)方法。同时,基于此种线性关系提出了由Hollomon本构关系模型参数预测硬度的H-EMI(Hardness based on Energy Method of Indentation)方法。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。

本文引用格式

姚博 , 蔡力勋 , 包陈 . 基于锥形压入的材料力学性能测试方法研究[J]. 航空学报, 2013 , 34(8) : 1874 -1883 . DOI: 10.7527/S1000-6893.2013.0065

Abstract

It is of considerable engineering significance to obtain parameters of uniaxial material constitutive relationships by using an indentation method for in-service engineering components,small dimensional components and welding structure materials,and it is useful to estimate the indentation hardness parameters of a material by its constitutive relationship. Based on the theory of indentation tests and elastic-plastic finite element analysis (EPFEA) with contact elements, a linear relationship between the energy ratios and yield stresses is obtained, and a cone indenter test method named constitutive relationship based on the energy method of indentation (CR-EMI) is presented to predict such key parameters of constitutive relationships of metallic materials as elastic modulus, yield stress and hardening index. Furthermore, a method is given named hardness based on energy method of indentation (H-EMI) based on the Hollomon constitutive model to forecast the hardness. The validity and accuracy of the CR-EMI method and the H-EMI method are proved by the indentation tests and finite element analyses of several metals.

参考文献

[1] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Material Research, 1992, 7(6): 1564-1583.

[2] Ma D J. Method for determining elastic modulus by instrumented indentation test. The Chinese Journal of Nonferrous Metals, 2010, 20(12): 2336-2343. (in Chinese) 马德军. 材料弹性模量的仪器化压入测试方法. 中国有色金属学报, 2010, 20(12): 2336-2343.

[3] Gong J H, Miao H Z, Peng Z J, et al. Effect of peak load on the determination of hardness and Young's modulus of hot-pressed Si3N4 by nanoindentation. Materials Science and Engineering, 2003, 354(1-2): 140-145.

[4] Chen Z, He M, Bavani B, et al. Elasticity modulus, hardness and fracture toughness of Ni3Sn4 intermetallic thin films. Materials Science and Engineering: A, 2006, 423(1-2): 107-110.

[5] Bucaille J L, Stauss S, Fellder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Materialia, 2003, 51(6): 1663-1678.

[6] Dao M, Chollacoop N, van Vlite K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia, 2001, 49(19): 3899-3918.

[7] An X H, Wu S D, Zhang Z F, et al. Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scripta Materialia, 2010, 63(5): 560-563.

[8] Li H Q, Ebrahimi F. Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys. Materials Science and Engineering, 2003, 347(1-2): 93-101.

[9] Lu L, Schwaiger R, Shan Z W, et al. Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia, 2005, 53(7): 2169-2179.

[10] Sakai M. Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metallurgica et Materialia, 1993, 41(6): 1751-1758.

[11] Rother B, Steiner A, Dietrich D A, et al. Depth-sensing indentation measurements with Vickers and Berkovich indenters. Journal of Materials Research, 1998, 13(8): 2071-2076.

[12] Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation. Scripta Materialia, 1999, 40(10): 1191-1198.

[13] Cheng Y T, Li Z Y, Cheng C M, et al. Scaling relationships for indentation measurements. Philosophical Magazine: A, 2002, 82(10): 1821-1829.

[14] Cheng Y T, Cheng C M. Scaling, dimensional analysis, and indentation measurements. Materials Science and Engineering: R, 2004, 44(4-5): 91-149.

[15] Chollacoop N, Dao M, Suresh S. Depth-sensing instrumented indentation with dual sharp indenters. Acta Materialia, 2003, 51 (13): 3713-3729.

文章导航

/