固体力学与飞行器总体设计

基于非线性连续介质损伤力学方法的微动疲劳寿命预测

  • 李爱民 ,
  • 崔海涛 ,
  • 温卫东 ,
  • 石炜
展开
  • 南京航空航天大学 能源与动力学院, 江苏 南京 210016
李爱民 男, 博士研究生。主要研究方向: 结构强度及微动疲劳性能。Tel: 025-84892200-2206 E-mail: liamnuaa@163.com;崔海涛 男, 博士, 教授, 博士生导师。主要研究方向: 结构疲劳寿命预测、复合材料结构损伤破坏分析、高温材料与结构的损伤机理。Tel: 025-84890126 E-mail: cuiht@nuaa.edu.cn;温卫东 男, 博士, 教授, 博士生导师。主要研究方向: 复合材料结构损伤与寿命分析, 结构优化设计与可靠性设计, 金属间化合物强度理论。Tel: 025-84892251 E-mail: gswwd@nuaa.edu.cn

收稿日期: 2012-11-27

  修回日期: 2013-01-23

  网络出版日期: 2013-02-18

基金资助

江苏省普通高校研究生科研创新计划资助项目(CXZZ12_0170);中央高校基本科研业务费专项资金

Prediction of Fretting Fatigue Life Based on Nonlinear Continuum Damage Mechanics

  • LI Aimin ,
  • CUI Haitao ,
  • WEN Weidong ,
  • SHI Wei
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-11-27

  Revised date: 2013-01-23

  Online published: 2013-02-18

Supported by

Funding of Jiangsu Innovation Program for Graduate Education (CXZZ12_0170);Fundamental Research Funds for the Central Universities

摘要

微动损伤被称为"工业癌症",为了更加准确预测微动疲劳寿命,本文提出了一种基于多轴非线性连续介质损伤力学(NLCD)模型的微动疲劳寿命预测方法。该方法在Chaboche NLCD模型基础上,引入临界等效塑性应变幅对其进行改进,得到了适用于微动疲劳的NLCD改进模型,对桥式光滑试件和燕尾榫结构模拟件分别进行了微动疲劳寿命预测,与文献试验结果误差分散带在2倍因子之内,且预测裂纹萌生位置与试验吻合良好,验证了本文方法的有效性。

本文引用格式

李爱民 , 崔海涛 , 温卫东 , 石炜 . 基于非线性连续介质损伤力学方法的微动疲劳寿命预测[J]. 航空学报, 2013 , 34(9) : 2122 -2129 . DOI: 10.7527/S1000-6893.2013.0077

Abstract

Fretting damage is known as an "industrial cancer". In order to predict fretting fatigue life accurately, a new fretting fatigue life prediction method is developed which is based on the non-linear-continuous-damage (NLCD) model. The new developed NLCD model applies to the fretting fatigue life prediction, which is modified by an equivalent plastic strain amplitude of the critical plane based on the Chaboche NLCD model. The fretting fatigue life of bridge-type smooth specimens and dovetail joints is got by the new model. Comparing with the experimental results of the literature, all of the estimated fretting fatigue life by developed NLCD model fall within the scatter bands of ±2N (±50%), and the predicted crack initiation location show good agreement with experimental results, which verifies the effectiveness of the proposed method.

参考文献

[1] Chaboche J L, Lesne P M. A non-linear continuous fatigue damage model. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17.

[2] He M J. Fretting fatigue of mechanical components. Beijing: National Defense Industry Press, 1994. (in Chinese) 何明鉴. 机械构件的微动疲劳. 北京: 国防工业出版社, 1994.

[3] He M J, Zhang D Z. The method of attached stress for determining fretting fatigue life. Aeroengine, 2003(3): 27-29. (in Chinese) 何明鉴,张德志. 确定微动疲劳寿命的附加应力法. 航空发动机, 2003(3): 27-29.

[4] Gu Y X, Wen W D, Cui H T. Prediction of fretting fatigue life of dovetail joint under LCF. Journal of Applied Sciences, 2007(5): 531-534. (in Chinese) 古远兴,温卫东,崔海涛. 燕尾榫连接结构低周微动疲劳寿命预测. 应用科学学报, 2007(5): 531-534.

[5] Lykins C D, Mall S, Jain V. An evaluation of parameters for predicting fretting fatigue crack initiation. International Journal of Fatigue, 2000, 22(8): 703-716.

[6] Golden P J, Grandt A F. Fracture mechanics based fretting fatigue life predictions in Ti-6Al-4V. Engineering Fracture Mechanics, 2004, 71(15): 2229-2243.

[7] Farris T N, Murthy H. Fundamentals of fretting applied to anisotropic materials. High-temperature fretting fatigue of single-crystal nickel. AFRL-ML-WP-TR-2006-4081, 2006.

[8] Zhu J J. Research on LCF fretting fatigue life prediction and experiment of dovetail joint. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese) 朱晶晶. 榫连接结构低周微动疲劳寿命预测方法与试验研究. 南京: 南京航空航天大学能源与动力学院, 2006.

[9] Lemaitre J, Chaboche J. Mechanics of solid materials. UK: Cambridge University Press, 1994.

[10] Marmi A K, Habraken A M, Duchene L. Multiaxial fatigue damage modelling at macro scale of Ti-6Al-4V alloy. International Journal of Fatigue, 2009, 31(11): 2031- 2040.

[11] Chaudonneret M. A simple and efficient multiaxial fatigue damage model for engineering applications of macro-crack initiation. Journal of Engineering Materials and Technology, 1993, 115(4): 373-379.

[12] Sines G. Behavior of metals under complex static and alternating stresses. Sines G, Waisman J L. Metal Fatigue. New York: McGraw Hill, 1959: 145-169.

[13] Fellows L J, Nowell D, Hills D A. On the initiation of fretting fatigue cracks. Wear, 1997, 205(1-2): 120-129.

[14] Shang D G, Wang D J. A new multiaxial fatigue damage model based on the critical plane approach. International Journal of Fatigue, 1998, 20(3): 241-245.

[15] Shi W. Research on fretting fatigue life of dovetail joint in aero-engine. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) 石炜. 航空发动机榫连接结构微动疲劳寿命研究. 南京: 南京航空航天大学能源与动力学院, 2012.

[16] Wei D S, Wang Y R. Effects of profile of contact surfaces on the stress distribution for tenon jointing in blade disk assemblies. Journal of Aerospace Power, 2010, 25(2): 407-411. (in Chinese) 魏大盛,王延荣. 榫连结构接触面几何构形对接触区应力分布的影响. 航空动力学报, 2010, 25(2): 407-411.

[17] Beijing Institute of Aeronautical Materials. Material data book for aircraft engine design. Beijing: China National Aero-Engine Corporation, 1990. (in Chinese) 北京航空材料研究所. 航空发动机设计用材料数据手册. 北京: 中国航空发动机总公司, 1990.

[18] Lee Y, Pan J, Hathaway R B, et al. Fatigue testing and analysis—theory and practice. Amsterdan: Elsevier Butterworth-Heinemann, 2005.

文章导航

/