流体力学与飞行力学

压电风扇激励非定常流动和换热特性数值研究

  • 谭蕾 ,
  • 谭晓茗 ,
  • 张靖周
展开
  • 1. 南京航空航天大学航天学院, 江苏 南京 210016;
    2. 南京航空航天大学能源与动力学院, 南京 210016
谭蕾 女, 博士研究生, 助理研究员。主要研究方向: 传热与传质。 Tel: 025-84892805 E-mail: tanlei@nuaa.edu.cn;谭晓茗 女, 博士, 副教授。主要研究方向: 传热与传质。 Tel: 025-84892200-2605 E-mail: txmyy@nuaa.edu.cn;张靖周 男, 博士, 教授, 博士生导师。主要研究方向: 传热传质学, 燃烧学, 红外隐身。 Tel: 025-84895909 E-mail: zhangjz@nuaa.edu.cn

收稿日期: 2012-07-10

  修回日期: 2013-01-22

  网络出版日期: 2013-01-24

基金资助

国家自然科学基金(51106073);航空科学基金(2011ZB52020)

Numerical Investigation on Unsteady Flow and Heat Transfer Characteristics of Piezoelectric Fan

  • TAN Lei ,
  • TAN Xiaoming ,
  • ZHANG Jingzhou
Expand
  • 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-07-10

  Revised date: 2013-01-22

  Online published: 2013-01-24

Supported by

National Natural Science Foundation of China (51106073); Aeronautical Science Foundation of China(2011ZB52020)

摘要

利用动网格技术对压电谐振风扇产生的非定常流场进行了数值模拟,以期进一步揭示压电风扇的流场特征和换热特性。研究表明:压电风扇上下两个区域均出现涡流,涡向相反(压电风扇上方为逆时针,下方为顺时针),涡对的尺度、位置和扰动范围随时间呈周期性变化规律;时均速度并非随着与压电风扇自由端距离的增大呈现单调衰减的趋势,而是在距离压电风扇自由端距离为一倍振幅的截面上出现峰值速度最大的速度分布型,该位置正是涡环达到最大型面的瞬间涡核所处位置。涡串发展、运动过程中与周围流体发生干涉融合形成的射流起到了强化换热的效果,换热效果最好的地方不是出现在平衡位置,而是涡对破碎、流体紊流度最强的地方。

本文引用格式

谭蕾 , 谭晓茗 , 张靖周 . 压电风扇激励非定常流动和换热特性数值研究[J]. 航空学报, 2013 , 34(6) : 1277 -1284 . DOI: 10.7527/S1000-6893.2013.0074

Abstract

A two-dimensional numerical investigation of the unsteady flow characteristics caused by a piezoelectric fan is performed by using a moving-grid technique in order to further address the flow and heat transfer characteristics. The results are as follows: two strong vortices with opposite rotating directions are observed at the trailing edge of the fan (counter-clockwise on the top side and clockwise on the bottom side). The vortical structures show cyclical variations over time in size, location and disturbance range. The time-averaged velocity does not decrease monotonically with the increase of the distance between the fan tip and the measured location. The maximum velocity appears at the position where the distance from the fan tip equals to the amplitude, and this position is also the location of the vortex core when the vortex reaches the maximum size. The vortices interfere and fuse with the surrounding fluid and form a jet in the process of development and movement, which produces an enhanced heat transfer effect on the heated wall. The lowest temperature as well as the peak convective heat transfer coefficient does not appear at the neutral position of the heated wall, but at the location corresponding to where the value of turbulent density is the largest.

参考文献

[1] Toda M. Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator. Ferroelectrics, 1978, 22(1): 911-918.

[2] Ihara A, Watanabe H. On the flow around flexible plates oscillating with large amplitude. Journal of Fluids and Structure, 1994, 8(7): 601-619.

[3] Acikalin T, Raman A, Garimella S V. Two-dimensional streaming flows induced by resonating thin beams. Journal of Acoustic Society of American, 2003, 114(4Pt1): 1785-1795.

[4] Kim Y H, Wereley S T, Chun C H. Phase-resolved flow field produced by a vibrating cantilever plate between two endplates. Physics of Fluids, 2004, 16(1): 145-162.

[5] Wait S M, Basak S, Garimella S V, et al. Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Transaction on Components and Packaging Technologies, 2005, 30(1): 119-128.

[6] Kimber M, Suzuki K, Kitsunai N, et al. Pressure and flow rate performance of piezoelectric fans. IEEE Transaction on Components and Packaging Technologies, 2009, 32(4): 766-775.

[7] Yoo J H, Hong J I, Cao W. Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices. Sensors Actuators A: Physical, 2000, 79(1): 8-12.

[8] Aciklain T, Wait S M, Garimella S V. Experimental investigation of the thermal performance of piezoelectric fans. Heat Transfer Engineering, 2004, 25(1): 4-14.

[9] Kimber M, Garimella S V, Raman A. Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers. Journal of Heat Transfer, 2007, 129(9): 1168-1176.

[10] Ackaln T, Garimella S V, Raman A, et al. Characterization and optimization of the thermal performance of miniature piezoelectric fans. International Journal of Hear and Fluid Flow, 2007, 28(4): 806-820.

[11] Kimber M, Garimella S V. Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan. International Journal of Hear and Mass Transfer, 2009, 52(19): 4470-4478.

[12] Aciklain T, Garimell S V. Analysis and prediction of the thermal performance of piezoelectrically actuated fans. Heat Transfer Engineering, 2009, 30(6): 487-498.

[13] Hu H, Lucas C, Hirofumi I. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing. Experiment in Fluids, 2011, 51(2): 347-359.

[14] Hu H Y. Mechanical vibration foundation. Beijing: Beihang University Press, 2005. (in Chinese) 胡海岩. 机械振动基础. 北京: 北航出版社, 2005.

[15] Buermann P, Raman A, Garimella S V. Dynamics and topology optimization of piezoelectric fans. IEEE Transactions on Components and Packging Technologies, 2003, 25(4): 592-600.

文章导航

/