铝合金焊接接头预腐蚀强度特性及预测
收稿日期: 2012-10-19
修回日期: 2013-01-04
网络出版日期: 2013-01-17
基金资助
江苏省自然科学基金(BK2012795)
Properties and Prediction of Pre-corrosion Strength of Aluminum Alloy Welded Joints
Received date: 2012-10-19
Revised date: 2013-01-04
Online published: 2013-01-17
Supported by
Natural Science Foundation of Jiangsu Province (BK2012795)
为保证航空航天器中贮存腐蚀溶液的焊接结构的耐久性,有必要对焊接接头预腐蚀强度特性进行研究。首先进行2219-T87铝合金焊接接头试样在酸性模拟溶液中的腐蚀试验,获取焊接接头和母材的腐蚀性能数据;根据腐蚀试验数据,结合焊接接头局部力学试验数据,采用有限元方法对焊接接头预腐蚀强度和断裂位置进行预测;通过焊接接头预腐蚀拉伸试验对预测结果进行验证。研究结果表明:焊接接头腐蚀性能最主要的特点是焊缝区、热影响区和母材的腐蚀性能存在显著差异;腐蚀性能是影响焊接接头预腐蚀强度的重要因素,且其影响随着腐蚀时间的增加而逐渐增大,导致长时间腐蚀的试样在拉伸试验中的断裂位置由力学性能薄弱的熔合区转移到腐蚀性能薄弱的母材区;所提出的预测方法具有试验规模小、结果准确且适应性强的优点。
张俊苗 , 聂宏 , 薛彩军 , 吴会强 , 鄢东洋 . 铝合金焊接接头预腐蚀强度特性及预测[J]. 航空学报, 2013 , 34(9) : 2161 -2168 . DOI: 10.7527/S1000-6893.2013.0064
In order to ensure the durability of welded structures used for long-term storage of corrosive solutions in the aerospace field, it is necessary to study the pre-corrosion strength properties of welded joints. Corrosion tests of welded joint specimens AA2219-T87 are conducted in an acid solution to obtain the corrosion property data of the welded joints and base metal, and the differences of corrosion properties between the welded joint and base metal are summarized. Based on the data of corrosion tests and welded joint local strength tests, a finite element method is used to predict the pre-corrosion strength and fracture position of welded joints, the results of which are verified by pre-corrosion tensile tests. The study shows that the major characteristic of a welded joint's corrosion resistance is the existence of obvious differences of corrosive resistance among the weld zone, the heat affected zone and the base metal. The corrosion resistance is an important factor for the pre-corrosion strength of welded joints, and its influence increases with time, leading to the translocation of fracture positions of long-time corroded specimens from areas of poor mechanical property to areas of poor corrosion property during tensile tests. The proposed prediction method of welded joint pre-corrosion strength can yield accurate results with a minimum number and scale of tests.
[1] Wang H F, Zuo D W, Wang H Y, et al. Microstructure and mechanical properties of 5554 aluminum alloy TIG welded seam. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(6): 753-757. (in Chinese) 汪洪峰, 左敦稳, 王宏宇, 等. 5554铝合金TIG焊缝组织与性能. 南京航空航天大学学报, 2010, 42(6): 753-757.
[2] Ghidini T, Dalle D C. Fatigue life predictions using fracture mechanics methods. Engineering Fracture Mechanics, 2009, 76(1): 134-148.
[3] Ambriz R R, Chicot D, Benseddiq N, et al. Local mechanical properties of the 6061-T6 aluminum weld using micro-traction and instrumented indentation. European Journal of Mechanics, 2011, 30(3): 307-315.
[4] John R, Jata K V, Sadananda K. Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys. International Journal of Fatigue, 2003, 25(9): 939-948.
[5] Liljedahl C D M, Zanellato O, Fitzpatrick M E, et al. The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading. International Journal of Fatigue, 2010, 32(4): 735-743.
[6] Pouget G, Reynolds A P. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. International Journal of Fatigue, 2008, 30(3): 463-472.
[7] Zhang D F, Chen Y L. Corrosion damage evolvement rule of aluminum alloy under equivalent accelerated conditon. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 340-342.(in Chinese) 张丹峰, 陈跃良. 当量加速试验条件下铝合金腐蚀形态演化规律. 南京航空航天大学学报, 2010, 42(3): 340-342.
[8] Alexopoulos N D, Papanikos P. Experimental and theoretical studies of corrosion-induced mechanical properties degradation of Aircraft 2024 aluminum alloy. Material Science and Engineering A, 2008, 498(1-2): 248-257.
[9] Paolinelli L D, Perez T, Simison S N. The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion. Corrosion Science, 2008, 50(9): 2456-2464.
[10] Burns J T, Kim S, Gangloff R P. Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu. Corrosion Science, 2010, 52(2): 498-508.
[11] Frederic M, Gilbert H. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behaviour of the aluminum alloy 2024. International Journal of Fatigue, 2009, 31(11-12): 1684-1695.
[12] Liu J Z, Chen B, Ye X B, et al. Fatigue and crack growth behavior of pre-corroded aluminum alloy 2024-T62 and its life prediction based on fracture mechanics. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 107-116. (in Chinese) 刘建中, 陈勃, 叶序彬, 等. 含腐蚀预损伤铝合金2024-T62的疲劳断裂行为及基于断裂力学的寿命预测. 航空学报, 2011, 32(1): 107-116.
[13] Zhang Y H, Lu G Z, Chen Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 779-782. (in Chinese) 张有宏, 铝国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究. 航空学报, 2005, 26(6): 779-782.
[14] United State Department of Defense. Fusion welding for aerospace applications. MIL-STD-2219, 1990.
[15] Gao Y P, Liang X B, Dong L, et al. GB/T 228-2010 Metallic-materials tensile testing-part 1: method of test at room temperature. Beijing: China Standard Press, 2010: 1-25. (in Chinese) 高怡裴, 梁新帮, 董莉, 等. GB/T 228-2010 金属材料拉伸试验第1部分:室温试验方法. 北京: 中国标准出版社, 2010: 1-25.
[16] Ji X C, Wang Y, Li H L. GB/T 16545-1996 Corrosion of metal and alloys-removal of corrosion products from corrosion test specimens. Beijing: China Standard Press, 1996: 253-260. (in Chinese) 纪晓春, 王云, 李慧玲. GB/T 16545-1996 金属和合金的腐蚀试样上腐蚀产物的清除. 北京: 中国标准出版社, 1996: 253-260.
/
〈 | 〉 |