导弹鲁棒高阶滑模制导控制一体化研究
收稿日期: 2012-11-28
修回日期: 2013-01-10
网络出版日期: 2013-01-15
基金资助
航空科学基金(20110196005)
Research of Integrated Robust High Order Sliding Mode Guidance and Control for Missiles
Received date: 2012-11-28
Revised date: 2013-01-10
Online published: 2013-01-15
Supported by
Aeronautical Science Foundation of China (20110196005)
董飞垚 , 雷虎民 , 周池军 , 李炯 , 邵雷 . 导弹鲁棒高阶滑模制导控制一体化研究[J]. 航空学报, 2013 , 34(9) : 2212 -2218 . DOI: 10.7527/S1000-6893.2013.0054
Aiming at the disadvantages of traditional two-loop guidance and control system against high speed and maneuverable targets, an integrated sliding mode guidance and control is derived in this paper. Through combining the intercept geometry with missile dynamics and basing on the principle of zeroing the line of sight (LOS) rate, a guidance and control problem is transformed to that of stabilization of a third integral chain system. Based on geometric homogeneity, a global finite-time stabilization control law for nominal systems is proposed. For the uncertainty of the system caused by target maneuverability and missile aerodynamic parameter perturbation, a compensating control law is provided using the super twisting algorithm (STA). Simulation results show that the proposed integrated guidance and control algorithm possesses the advantages of smaller miss distance and smoother variations in missile attitude and elevators over the conventional two-loop design.
[1] Shkolnikov I, Shtessel Y, Lianos D. Integrated guidance-control system of a homing interceptor: sliding mode approach. AIAA-2001-4218, 2001.
[2] Shtessel Y, Shkolnikov I. Integrated guidance and control of advanced interceptors using second order sliding modes. Proceeding of the 42nd IEEE Conference on Decision and Control, 2003: 4587-4592.
[3] Shima T, Idan M, Golan O M. Sliding mode control for integrated missile autopilot guidance. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 250-260.
[4] Hughes T L, McFarland M B. Integrated missile guidance law and autopilot design using linear optimal control. AIAA-2000-4163, 2000.
[5] Xin M, Balakrishnan S N, Ohlmeyer E J. Integrated guidance and control of missiles with θ-D method. IEEE Transactions on Control Systems Technology, 2006, 14(6): 981-992.
[6] Duan G R, Hou M Z, Tan F. Adaptive, integrated guidance and control law design using sliding mode approach. Acta Armamentarii, 2010, 31(2): 191-198. (in Chinese) 段广仁, 侯明哲, 谭峰. 基于滑模方法的自适应一体化导引与控制律设计. 兵工学报, 2010, 31(2): 191-198.
[7] Theodoulis S, Duc G. Missile autopilot design: gain-scheduling and the gap metric. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 986-996.
[8] Defoort M, Floquet T, Kokosy A, et al. A novel higher order sliding mode control scheme. System & Control Letters, 2009, 58(2): 102-108.
[9] Bhat S P, Bernstein D S. Finite-time stability of homogenous systems. Proceedings of the American Control Conference, 1997: 2513-2514.
[10] Moreno J A, Osorio M. Strict Lyapunov function for the super-twisting algorithm. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040.
[11] Atassi A N, Khalil H K. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Systems & Control Letters, 2000, 39(3): 183-191.
[12] Levant A. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 2003, 76(9/10): 924-941.
[13] Menon P K, Iragavarapu V R, Sweriduk G, et al. Software tools for nonlinear missile autopilot design. AIAA-1999-3975, 1999.
[14] Zhang Y A, Hu Y A, Su S B. Geometric approach and robust control approach to three-dimentional missile guidance. Acta Aeronautica et Astronautica Sinica, 2002, 23(1): 88-90. (in Chinese) 张友安, 胡云安, 苏身榜. 三维制导的几何方法与鲁棒控制方法. 航空学报, 2002, 23(1): 88-90.
[15] Dong F Y, Lei H M, Li J, et al. Design of incremental dynamic inversion control law for missiles with tracking differentiator. Journal of Astronautics, 2012, 33(10): 1439-1444. (in Chinese) 董飞垚, 雷虎民, 李炯, 等. 带有跟踪微分器的导弹增量动态逆控制律设计. 宇航学报, 2012, 33(10): 1439-1444.
/
〈 | 〉 |