电子与控制

导弹鲁棒高阶滑模制导控制一体化研究

  • 董飞垚 ,
  • 雷虎民 ,
  • 周池军 ,
  • 李炯 ,
  • 邵雷
展开
  • 空军工程大学 防空反导学院, 陕西 西安 710051
董飞垚 男, 博士研究生。主要研究方向: 非线性控制及其在航空航天中的应用。Tel: 029-84789435 E-mail: dongfeiyao.live@aliyun.com;雷虎民 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器制导控制技术。Tel: 029-84789196 E-mail: hmleinet@21cn.com;周池军 男, 博士研究生。主要研究方向: 飞行器制导控制技术。Tel: 029-84789435 E-mail: 1470615968@qq.com;李炯 男, 博士, 讲师。主要研究方向: 飞行器制导控制技术。Tel: 029-84789198 E-mail: graceful001@126.com;邵雷 男, 博士, 讲师。主要研究方向: 基于数据的飞行控制技术。Tel: 029-84789198 E-mail: weiwei_19850922@163.com

收稿日期: 2012-11-28

  修回日期: 2013-01-10

  网络出版日期: 2013-01-15

基金资助

航空科学基金(20110196005)

Research of Integrated Robust High Order Sliding Mode Guidance and Control for Missiles

  • DONG Feiyao ,
  • LEI Humin ,
  • ZHOU Chijun ,
  • LI Jiong ,
  • SHAO Lei
Expand
  • School of Air and Missile Defense, Air Force Engineering University, Xi'an 710051, China

Received date: 2012-11-28

  Revised date: 2013-01-10

  Online published: 2013-01-15

Supported by

Aeronautical Science Foundation of China (20110196005)

摘要

针对传统制导与控制系统分开设计在拦截高速机动目标时的缺陷,提出一种高阶滑模制导控制一体化方法。综合考虑弹目拦截几何与导弹动态,根据零化视线(LOS)角速率的准则,将导弹制导控制问题转化为一个三阶积分链系统的镇定问题。基于几何齐次理论设计了标称系统的全局有限时间镇定控制律,同时针对目标机动和导弹气动参数摄动等带来的不确定性,利用超扭曲算法(STA)设计了补偿控制律。仿真结果表明,与传统制导与控制系统分开设计相比,本文所提出的鲁棒高阶滑模制导控制一体化方法具有更小的脱靶量,且导弹姿态和控制舵偏角的变化更加平缓。

本文引用格式

董飞垚 , 雷虎民 , 周池军 , 李炯 , 邵雷 . 导弹鲁棒高阶滑模制导控制一体化研究[J]. 航空学报, 2013 , 34(9) : 2212 -2218 . DOI: 10.7527/S1000-6893.2013.0054

Abstract

Aiming at the disadvantages of traditional two-loop guidance and control system against high speed and maneuverable targets, an integrated sliding mode guidance and control is derived in this paper. Through combining the intercept geometry with missile dynamics and basing on the principle of zeroing the line of sight (LOS) rate, a guidance and control problem is transformed to that of stabilization of a third integral chain system. Based on geometric homogeneity, a global finite-time stabilization control law for nominal systems is proposed. For the uncertainty of the system caused by target maneuverability and missile aerodynamic parameter perturbation, a compensating control law is provided using the super twisting algorithm (STA). Simulation results show that the proposed integrated guidance and control algorithm possesses the advantages of smaller miss distance and smoother variations in missile attitude and elevators over the conventional two-loop design.

参考文献

[1] Shkolnikov I, Shtessel Y, Lianos D. Integrated guidance-control system of a homing interceptor: sliding mode approach. AIAA-2001-4218, 2001.

[2] Shtessel Y, Shkolnikov I. Integrated guidance and control of advanced interceptors using second order sliding modes. Proceeding of the 42nd IEEE Conference on Decision and Control, 2003: 4587-4592.

[3] Shima T, Idan M, Golan O M. Sliding mode control for integrated missile autopilot guidance. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 250-260.

[4] Hughes T L, McFarland M B. Integrated missile guidance law and autopilot design using linear optimal control. AIAA-2000-4163, 2000.

[5] Xin M, Balakrishnan S N, Ohlmeyer E J. Integrated guidance and control of missiles with θ-D method. IEEE Transactions on Control Systems Technology, 2006, 14(6): 981-992.

[6] Duan G R, Hou M Z, Tan F. Adaptive, integrated guidance and control law design using sliding mode approach. Acta Armamentarii, 2010, 31(2): 191-198. (in Chinese) 段广仁, 侯明哲, 谭峰. 基于滑模方法的自适应一体化导引与控制律设计. 兵工学报, 2010, 31(2): 191-198.

[7] Theodoulis S, Duc G. Missile autopilot design: gain-scheduling and the gap metric. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 986-996.

[8] Defoort M, Floquet T, Kokosy A, et al. A novel higher order sliding mode control scheme. System & Control Letters, 2009, 58(2): 102-108.

[9] Bhat S P, Bernstein D S. Finite-time stability of homogenous systems. Proceedings of the American Control Conference, 1997: 2513-2514.

[10] Moreno J A, Osorio M. Strict Lyapunov function for the super-twisting algorithm. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040.

[11] Atassi A N, Khalil H K. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Systems & Control Letters, 2000, 39(3): 183-191.

[12] Levant A. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 2003, 76(9/10): 924-941.

[13] Menon P K, Iragavarapu V R, Sweriduk G, et al. Software tools for nonlinear missile autopilot design. AIAA-1999-3975, 1999.

[14] Zhang Y A, Hu Y A, Su S B. Geometric approach and robust control approach to three-dimentional missile guidance. Acta Aeronautica et Astronautica Sinica, 2002, 23(1): 88-90. (in Chinese) 张友安, 胡云安, 苏身榜. 三维制导的几何方法与鲁棒控制方法. 航空学报, 2002, 23(1): 88-90.

[15] Dong F Y, Lei H M, Li J, et al. Design of incremental dynamic inversion control law for missiles with tracking differentiator. Journal of Astronautics, 2012, 33(10): 1439-1444. (in Chinese) 董飞垚, 雷虎民, 李炯, 等. 带有跟踪微分器的导弹增量动态逆控制律设计. 宇航学报, 2012, 33(10): 1439-1444.

文章导航

/