固体力学与飞行器总体设计

复合材料部件电加热防冰性能试验

  • 马辉 ,
  • 张大林 ,
  • 孟繁鑫 ,
  • 陈维建
展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
马辉 男,博士研究生。主要研究方向:飞机防\除冰、飞行器环境控制。Tel:025-84892320 E-mail:valen@nuaa.edu.cn;张大林 男,博士,教授,博士生导师。主要研究方向:飞行器环境控制、飞机防\除冰系统、计算传热学、电子设备冷却。Tel:025-84892320 E-mail:zhangdalin@nuaa.edu.cn;陈维建 男,博士,副教授,硕士生导师。主要研究方向:飞行器环境控制、飞机防\除冰系统、计算传热学、电子设备冷却。Tel:025-84893633 E-mail:weijian_chen@nuaa.edu.cn

收稿日期: 2012-09-27

  修回日期: 2013-01-04

  网络出版日期: 2013-01-09

基金资助

南京航空航天大学基本科研业务费专项科研项目(NS2010002)

Experiment of Electro-thermal Anti-icing on a Composite Assembly

  • MA Hui ,
  • ZHANG Dalin ,
  • MENG Fanxin ,
  • CHEN Weijian
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-09-27

  Revised date: 2013-01-04

  Online published: 2013-01-09

Supported by

NUAA Research Funding (NS2010002)

摘要

在基于涡轮组和制冷机组联合制冷及气/液两流体喷嘴产生雾化水滴的小型直流式冰风洞中,进行了复合材料部件电加热防冰系统的性能试验。通过改变来流风速、模拟的结冰气象条件、电加热功率及加热方式,得到了不同防冰方式下试验件内的温度分布。结果表明:在本文研究范围内,相同防冰方式下电防冰加热功率随来流风速单调增加;空气温度和液态水含量对电加热功率的影响相互耦合;电加热功率与防护区内的温度及温度梯度成正比;相同防冰负荷下,采用分(多)区加热可以使防护区内的温度及温度梯度分布更合理。

本文引用格式

马辉 , 张大林 , 孟繁鑫 , 陈维建 . 复合材料部件电加热防冰性能试验[J]. 航空学报, 2013 , 34(8) : 1846 -1853 . DOI: 10.7527/S1000-6893.2013.0320

Abstract

An experiment of electro-thermal anti-icing on a composite assembly is presented. The experiment is run in a small open-circuit icing research tunnel based on a refrigerant system composed of a freon refrigerator and air turbines, and a spray system consisting of air/fluid nozzles. Temperature distribution is provided for different anti-icing methods by altering air speeds, icing conditions and electro-heating powers. The results show that anti-icing electro-heating power increases with air speed, and air temperature and the liquid water content have a coupled effect on the power needed. Temperature and its gradients in the assembly is in proportion to electro-heating power. Multi-zone heating methods lead to reasonable temperature distribution of the assembly under the same anti-icing thermal loads.

参考文献

[1] Qiu X G, Han F H. Aircraft anti-icing system. Beijing: Aviation Professional Teaching Materials Editing Group, 1985: 44-58. (in Chinese) 裘燮纲, 韩凤华. 飞机防冰系统. 北京: 航空专业教材编审组, 1985: 44-58.
[2] FAA Technical Center. Aircraft icing handbook volume1. AD-A238039, 1991.
[3] Thomas S, Cassoni R. Aircraft anti-icing and deicing techniques modeling. AIAA-1996-390, 1996.
[4] Cronin M J. The prospects and potential of all electric aircraft. AIAA-1983-2478, 1983.
[5] Blanding D. Subsystem design and integration for the more electric aircraft. AIAA-2007-4828, 2007.
[6] Dang X M, Cheng J, Lin L. Development of the environmental control system of Chinese Large Aircraft. Advances in Aeronautical Science and Engineering, 2010, 1(1): 21-24. (in Chinese) 党晓民, 成杰, 林丽. 我国大型飞机环境控制系统研制展望. 航空工程进展, 2010, 1(1): 21-24.
[7] Kissling H H. Aircraft engine anti-icing test and evaluation technology. AIAA-1972-162, 1972.
[8] Fanelli M, Wright W B. Experimental and numerical investigation of anti-icing phenomena on a NACA 0012 assembly. AIAA-1992-531, 1992.
[9] Al-Khalil K, Hitzigrath R. Icing analysis and test of a business jet engine inlet duct. AIAA-2000-1040, 2000.
[10] Botura G C, Sweet D. Development and demonstration of low power electrothermal de-icing system. AIAA-2005-1460, 2005.
[11] Botura G C, Sweet D. Concept development of low power electrothermal de-icing system. AIAA-2006-864, 2006.
[12] Yang Q, Chang S N, Yuan X G. Study on numerical method for determining the droplet trajectories. Acta Aeronautica et Astronautica Sinica, 2002, 23(2): 173-176. (in Chinese) 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究. 航空学报, 2002, 23(2): 173-176.
[13] Zhang D L, Yang X, Ang H S. Numerical simulation of supercooled water droplets impingement on icing surfaces. Journal of Aerospace Power, 2003, 18(1): 87-91. (in Chinese) 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟. 航空动力学报, 2003, 18(1): 87-91.
[14] Chen W J, Zhang D L. Numerical simulation of ice accretion on airfoils. Journal of Aerospace Power, 2005, 20(6): 1010-1017. (in Chinese) 陈维建, 张大林.飞机机翼结冰过程的数值模拟. 航空动力学报, 2005, 20(6): 1010-1017.
[15] Chen W J, Zhang D L. Prediction of rime ice accretion and the resulting effect on airfoil performance. Transactions of Nanjing University of Aeronautics and Astronautics, 2005, 22(1): 9-15.
[16] Bu X Q, Lin G P. New method for calculation of anti-icing heat loads. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 208-212. (in Chinese) 卜雪琴, 林贵平. 防冰热载荷计算的一种新方法.航空学报, 2006, 27(2): 208-212.
[17] Peng Y X, Lin G P. Icing tunnel experimental study of the static pressure detector. Engineering Sciences, 2009, 11(11): 51-55. (in Chinese) 彭又新, 林贵平. 全静压受感器冰风洞试验技术研究.中国工程科学, 2009, 11(11): 51-55.
[18] Ide R. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel. NASA TM-102447, 1990.
文章导航

/