流体力学与飞行力学

前置不同诱导轮高速离心泵旋转空化特性研究

  • 郭晓梅 ,
  • 李昳 ,
  • 崔宝玲 ,
  • 朱祖超
展开
  • 1. 浙江水利水电专科学校 机械电子工程系, 浙江 杭州 310018;
    2. 浙江理工大学 浙江省流体传输技术研究重点实验室, 浙江 杭州 310018
郭晓梅,女,硕士,副教授。主要研究方向:流体机械内部流动机理。Tel:0571-86929117,E-mail:guoxiaomei19@163.com;李昳,女,硕士,副教授,硕士生导师。主要研究方向:流体机械内部流动机理。Tel:0571-86843348,E-mail:liyi0511@163.com

收稿日期: 2012-09-12

  修回日期: 2012-11-28

  网络出版日期: 2012-12-11

基金资助

国家自然科学基金(51249003);浙江省科技厅公益工业项目(2012C21013);浙江理工大学重中之重学科开放基金项目(ZSTUMD2011A007)

Research on the Rotation Cavitation Performance of High-speed Rotation Centrifugal Pump with Different Pre-positioned Inducers

  • GUO Xiaomei ,
  • LI Yi ,
  • CUI Baoling ,
  • ZHU Zuchao
Expand
  • 1. Department of Mechanical and Electrical Engineering, Zhejiang Water Conservancy and Hydropower College, Hangzhou 310018, China;
    2. The Provincial Key Laboratory of Fluid Transmission Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

Received date: 2012-09-12

  Revised date: 2012-11-28

  Online published: 2012-12-11

Supported by

National Natural Science Foundation of China (51249003); Zhejiang Province Public Industrial Project(2012C21013); Open Fund Project of Priority among Priorities Discipline of Zhejiang Sci-Tech University(ZSTUMD2011A007)

摘要

以高速诱导轮离心泵为研究对象,开展了无诱导轮、前置等螺距诱导轮、前置变螺距诱导轮及前置分流叶片诱导轮4种情况下离心泵全流道的空化数值模拟和汽蚀特性实验研究。通过外特性实验研究得到:在同一流量下,前置等螺距诱导轮离心泵的扬程最低,前置变螺距诱导轮离心泵的扬程次之,前置分流叶片诱导轮离心泵的扬程较两者稍高。通过汽蚀实验和数值模拟研究得到:在前置3种诱导轮的情况下,离心泵的汽蚀性能都得到了改善,其改善效果从低到高依次是:变螺距诱导轮、分流叶片诱导轮、等螺距诱导轮。通过对汽相体积分数分布情况的研究得到:诱导轮的吸力面除进口外缘容易发生汽蚀外,叶片出口靠近轮毂侧也较容易发生汽蚀;对比分析主叶轮和诱导轮的汽蚀情况,得到诱导轮汽蚀的严重性与离心叶轮的汽蚀严重性并非成正比的结论。

本文引用格式

郭晓梅 , 李昳 , 崔宝玲 , 朱祖超 . 前置不同诱导轮高速离心泵旋转空化特性研究[J]. 航空学报, 2013 , 34(7) : 1572 -1581 . DOI: 10.7527/S1000-6893.2013.0275

Abstract

Flow cavitation simulation and cavitation characteristics experiment of a high-speed centrifugal pump are carried out. The pump is equipped respectively without a inducer, with a pre-positioned equal pitch inducer, a pre-positioned variable pitch inducer and a pre-positioned shunt type inducer. The research of the external characteristics experiment reveals that the head of the centrifugal pump with a pre-positioned shunt type inducer is highest, next is the pump with a pre-positioned variable pitch inducer, while the lowest is that with a pre-positioned equal pitch inducer. The research of the cavitation experiment and simulation shows that the cavitation performance of the centrifugal pump with a pre-positioned equal pitch inducer is best, next is the pump with a pre-positioned shunt type inducer, and the last is that with a pre-positioned variable pitch inducer. Cavitation occurs easily on the outside edge of the inducer blade at the suction surface as well as at the outlet near the hub. A comparison of the cavitation of the impeller and the inducer shows that the degree of the cavitation of the inducer is not directly proportional to that of the impeller.

参考文献

[1] Lee K H, Yoo J H, Kang S H. Experiments on cavitation instability of a two-bladed turbopump inducer. Journal of Mechanical Science and Technology, 2009, 23(9): 2350- 2356.
[2] Yamanishi N, Fukao S, Qiao X Y, et al. LES simulation of backflow vortex structure at the inlet of an inducer. Journal of Fluids Engineering, 2007, 129(5): 587-594.
[3] Kimura T, Yoshida Y, Hashimoto T, et al. Numerical simulation for vortex structure in a turbopump inducer: close relationship with appearance of cavitation instabilities. Journal of Fluids Engineering, 2008, 130(5): 051104-1-051104-9.
[4] Hosangadi A, Ahuja V, Ungewitter R J. Numerical study of a flat plate inducer: comparison of performance in liquid hydrogen and water. AIAA-2006-5070, 2006.
[5] Dorney D, Griffin L, Marcu B, et al. Unsteady flow interactions between the LH2 feed line and SSME LPFP inducer. AIAA-2006-5073, 2006.
[6] Li X J, Yuan S Q, Pan Z Y, et al. Analysis of cavitation head drop in centrifugal pump with inducer. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 89-93.(in Chinese) 李晓俊, 袁寿其, 潘中永, 等. 诱导轮离心泵空化条件下扬程下降分析. 农业机械学报, 2011, 42(9): 89-93.
[7] Zhuang B T, Luo X W, Wang X, et al. Numerical simulations of cavitating flow in the inducer and primary impeller of a multistage vertical barrel pump. Journal of Tsinghua University: Science and Technology, 2011, 51(2): 267-271. (in Chinese) 庄保堂, 罗先武, 王鑫, 等. 立式多级筒袋泵诱导轮及首级叶轮内的空化流动模拟. 清华大学学报: 自然科学版, 2011, 51(2): 267-271.
[8] Ding X N, Liang W K. Numerical simulation of two-phases cavitation flow in equal-pitch inducer. Journal of Water Resources and Water Engineering, 2009, 20(5): 170-172. (in Chinese) 丁希宁, 梁武科. 两相流数值模拟分析等螺距诱导轮内空化问题. 水资源与水工程学报, 2009, 20(5): 170-172.
[9] Chu B X, Xu C, Zhang X N, et al. Influence of inducer cavitation on fluid-solid coupled stress analysis. Journal of Rocket Propulsion, 2012, 38(2): 44-48.(in Chinese) 褚宝鑫, 须村, 张晓娜, 等. 诱导轮空化对流固耦合应力分析的影响. 火箭推进, 2012, 38(2): 44-48.
[10] Niu K B. Numerical analysis of backflow cavitation in inlet of centrifugal pump with inducer. Xi’an: Institute of water Resources and hydro-electrical Engineering, Xi’an University of Technology, 2010. (in Chinese) 牛凯斌. 离心泵诱导轮入口回流空化的数值研究. 西安: 西安理工大学水利水电工程学院, 2010.
[11] Guo X M, Zhu Z C, Cui B L, et al. Analysis of cavitation and flow computation of inducer. Journal of Mechanical Engineering, 2010, 46(4): 122-128. (in Chinese) 郭晓梅, 朱祖超, 崔宝玲, 等. 诱导轮内流场数值计算及汽蚀特性分析. 机械工程学报, 2010, 46(4): 122-128.
[12] Guo X M, Zhu Z C, Cui B L, et al. The cavitation character of variable-pitch high speed inducer. Journal of Engineering Thermophysics, 2010, 31(8): 1315-1319. (in Chinese) 郭晓梅, 朱祖超, 崔宝玲, 等. 变螺距高速诱导轮的汽蚀特性.工程热物理学报, 2010, 31(8): 1315-1319.
[13] Tang F, Li J W, Chen H, et al. Study on cavitation performance of inducer with annulus inlet casing. Journal of Mechanical Engineering, 2011, 47(4): 171-176. (in Chinese) 唐飞, 李家文, 陈晖, 等. 采用环形入口壳体的诱导轮汽蚀性能研究. 机械工程学报, 2011, 47(4): 171-176.
[14] Huang D G, Zhuang Y Q, Cai R Z. A computational method for cavitational flows based on energy conservation.Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineer in Science,2007, 221(11): 1333-1338.
[15] Singhal A K,Athavale M M,Li H. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[16] Saito Y, Nakamori I, Ikohagi T. Numerical analysis of unsteady vaporous cavitating flow around hydrofoi. Fifth International Symposium on Cavitation, 2003: 1-8.
[17] Zhan L L. Study on numerical calculation and experiment of hydraulic machinery cavitation. Wuhan: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, 2006. (in Chinese) 占梁梁. 水力机械空化数值计算与试验研究. 武汉: 华中科技大学水电与数字化工程学院, 2006.
文章导航

/