超流体物质波干涉陀螺仪的噪声研究
收稿日期: 2012-05-23
修回日期: 2012-11-28
网络出版日期: 2013-04-23
基金资助
国家自然科学基金(61074162);高等学校博士学科点专项科研基金(200802870011)
Research on the Noises of Superfluid Matter Wave Interference Gyroscope
Received date: 2012-05-23
Revised date: 2012-11-28
Online published: 2013-04-23
Supported by
National Natural Science Foundation of China (61074162); Research Fund for the Doctoral Program of Higher Education of China (200802870011) *Corresponding author. Tel.: 025-84892304-804 E-mail: zhwac@nuaa.edu.cn
陀螺仪的精度与其噪声密切相关,为开发新型高精度的超流体物质波干涉陀螺仪,必须对其噪声进行系统研究。根据超流体陀螺噪声产生的机理,分析了该陀螺噪声的来源,并把超流体陀螺的噪声类型归纳为:热、锁定值波动、温度波动、频率波动和检测元件等。在建立了各噪声数学模型的基础上,利用超流体陀螺通用的参数,对其噪声进行了分析。分析结果表明:热噪声与陀螺的结构参数和工作参数相关,与被测角速度无关;锁定值波动噪声只与结构参数相关;其他噪声与结构参数、工作参数和被测角速度都相关;检测元件、频率波动和锁定值波动噪声是构成超流体陀螺输出噪声的主要因素;在角速度变化量的范围内,超流体陀螺的输出噪声非线性变化,在1 Hz的带宽下,其变化范围为-7到-6次方的数量级。
赵伟 , 郑睿 , 刘建业 , 谢征 . 超流体物质波干涉陀螺仪的噪声研究[J]. 航空学报, 2013 , 34(4) : 902 -908 . DOI: 10.7527/S1000-6893.2013.0151
Gyroscope accuracy is closely related to its noise. To develop a novel superfluid matter wave interference gyroscope with high accuracy, its noise should be studied systematically. First, according to the generating mechanism of gyroscope noise, its origins are analyzed. The noise types are classified as thermal, locking value fluctuation, temperature fluctuation, frequency fluctuation and detecting element noise. Then, based on the mathematic model of each noise, the gyroscope noise is analyzed by utilizing some common parameters. The results show that thermal noise is relevant to the gyroscope structure parameter and working parameter, but is irrelevant to detected angular velocity. Locking fluctuation noise is only relevant to structure parameter; the other noises are all related to structure parameter, working parameter and detected angular velocity. Detecting element, frequency and locking value fluctuation noises are the primary factors that contribute to gyroscope output noise. In the range of the changing value of angular velocity, the gyroscope output noise changes nonlinearly with arange from the order of -7 to -6 in 1 Hz bandwidth.
Key words: superfluid; gyroscopes; matter wave; interference; noise
[1] Liu J Y, Zeng Q H, Zhao W, et al. Theory and application of navigation system. Xi'an: Northwestern Polytechnical University Press, 2010: 2-5. (in Chinese) 刘建业, 曾庆化, 赵伟, 等. 导航系统理论与应用. 西安: 西北工业大学出版社, 2010: 2-5.
[2] Qin Y Y. Current status and development trend of international inertial instrument. Aeronautical Manufacturing Technology, 2008(9): 68-69. (in Chinese) 秦永元. 国际惯性器件发展现状和趋势. 航空制造技术, 2008(9): 68-69.
[3] Wang W. Technology of interference fibre optic gyroscope. Beijing: China Astronautic Publishing House, 2010: 4-6. (in Chinese) 王巍. 干涉型光纤陀螺仪技术. 北京: 中国宇航出版社, 2010: 4-6.
[4] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom interferometer Sagnac gyroscope. Classical and Quantum Gravity, 2000, 17(12): 2385-2398.
[5] Hoskinson E, Packard R E, Haard T M. Quantum whisling in superfluid helium-4. Nature, 2005, 443(7024): 376.
[6] Hoskinson E, Sato Y, Packard R E. Superfluid4He interferometer operating near 2K. Physical Review B, 2006, 74(10): 100509.1-100509.8.
[7] Sato Y. Fiske-amplified superfluid interferometry. Physical Review B, 2010, 81(17): 172502.1-172502.4.
[8] Narayana S, Sato Y. Superfluid quantum interference in multiple-turn reciprocal geometry. Physical Review Letters, 2011, 106(6): 255301.1-255301.4.
[9] Golovashkin A I, Zherikhina L N, Tskhovrebov A M, et al. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: the role of quantum fluctuations. Journal of Experimental and Theoretical Physics, 2010, 111(2): 332-339.
[10] Golovashkin A I, Izmalov G N, Ozolin V V, et al. Scheme of laboratory measurements of gravimagnetic effects with SHeQUID equipped with a rotation flux transformer. Gravitation and Comology, 2010, 16(1): 78-84.
[11] Sato Y, Joshi A, Packard R E. Flux locking a superfluid interferomenter. Applied Physics Letters, 2007, 91(7): 074107.1-074107.3.
[12] Song B Z, Zhao W, Xie Z, et al. Research on modeling and simulation for new quantum whistling superfluid cryogenic gyroscope. Journal of Applied Sciences, 2009, 27(3): 321-325. (in Chinese) 宋宝璋, 赵伟, 谢征, 等. 新型低温哨音超流体陀螺模型. 应用科学学报, 2009, 27(3): 321-325.
[13] Xie Z, Liu J Y, Zhao W, et al. Analysis and simulation of measure range of double weak-links structured high sensitivity superfluid gyroscope. Journal of Chinese Inertial Technology, 2011, 19(1): 79-83. (in Chinese) 谢征, 刘建业, 赵伟, 等. 双弱连接结构的高精度超流体陀螺的量程分析. 中国惯性技术学报, 2011, 19(1): 79-83.
[14] Xie Z, Liu J Y, Zhao W, et al. The exploratory research of a novel gyroscope based on superfluid Josephson effect. 2010 IEEE/ION Position Location and Navigation Symposium (PLANS), 2010: 14-19.
[15] Feng M Y, Zhao W, Liu J Y, et al. Information extraction and range expanding technology of double weak-link structured superfluid gyroscope. Modern Electronic Technique, 2012, 35(2): 94-99. (in Chinese) 冯铭瑜, 赵伟, 刘建业, 等. 双弱连接超流体陀螺信息提取与量程扩展技术. 现代电子技术, 2012, 35(2): 94-99.
[16] Liu J Y, Xie Z, Feng M Y, et al. Current status and development of superfluid gyroscope. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 1-10. (in Chinese) 刘建业, 谢征, 冯铭瑜, 等. 超流体陀螺仪的发展概况与研究进展. 航空学报, 2012, 33(1): 1-10.
[17] Chui T, Holmes W, Penanen K. Fluctuations of the phase difference across an array of Josephson junctions in superfluid 4He near the Lambda transition. Physical Review Letters, 2003, 90(8): 085301.1-085301.4.
[18] Sato Y, Joshi A, Packard R E. Direct measurement of quantum phase gradients in superfluid 4He flow. Physical Review Letters, 2007, 98(19): 195302.1-195302.3.
[19] Welander P B, Hahn I. Miniature high-resolution thermometer for low-temperature applications. Review of Scientific Instruments, 2001, 72(9): 3600-3604.
[20] Sato Y, Parkard R E. Superfluid helium quantum interference devices: physics and applications. Reports on Progress in Physics, 2012, 75(1): 016401.1-016401.27.
[21] Hoskinson E, Sato Y, Penanen K, et al. A chemical potential "battery" for superfluid4He weak links. Proceedings of the 24th International Conference on Low Temperature Physics, 2005: 117-118.
[22] Sato Y. DC-SQUID based neodymium magnet displacement sensor for superfluid experiments. Review of Scientific Instruments, 2009, 80(5): 055102.1-055102.5.
/
〈 | 〉 |