固体力学与飞行器总体设计

一种层压复合材料组合界面单元及有限元模型

  • 李彪 ,
  • 李亚智 ,
  • 胡博海
展开
  • 西北工业大学航空学院, 陕西 西安 710072
李彪 男, 博士研究生。主要研究方向: 复合材料结构力学。 Tel: 029-88460621 E-mail: libiao@mail.nwpu.edu.cn;李亚智 男, 博士, 教授, 博士生导师。主要研究方向: 复合材料结构力学, 结构疲劳与断裂分析。 Tel: 029-88460621 E-mail: yazhi.li@nwpu.edu.cn

收稿日期: 2012-07-06

  修回日期: 2012-09-14

  网络出版日期: 2012-12-06

A New Interfacial Element and Finite Element Model for Composite Laminates

  • LI Biao ,
  • LI Yazhi ,
  • HU Bohai
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-07-06

  Revised date: 2012-09-14

  Online published: 2012-12-06

摘要

为了高效模拟计算复合材料层合板的层间损伤,提出了一种由刚性元和零厚度的内聚力单元组合而成的新型组合界面单元,并提出了以弯曲板单元作为子层单元,与上述界面单元结合构成的层合板三维有限元模型,通过界面单元刚度的连续衰减模拟分层损伤累积过程。有限厚度的八结点组合界面单元每个结点有5个自由度,能考虑子层结点平动和转动对层间损伤的作用。通过对双悬臂梁(DCB)和末端缺口弯曲(ENF)试验的计算模拟表明,新型组合界面单元和有限元模型能很好地模拟复合材料层合板的分层损伤过程,对不同的网格划分有很好的适应性。

本文引用格式

李彪 , 李亚智 , 胡博海 . 一种层压复合材料组合界面单元及有限元模型[J]. 航空学报, 2013 , 34(6) : 1370 -1378 . DOI: 10.7527/S1000-6893.2013.0237

Abstract

A novel interfacial element consisting of eight rigid elements and a zero thickness cohesive element is introduced. The type of elements are of finite thickness and are used together with shell elements to constitute a three dimensional model of composite laminates. Each node of the element possesses five degrees of freedom in common with the adjacent quadrilateral shell elements. Therefore no additional degrees of freedom are required in the finite element model of the laminate except those of the shell elements. The translational and rotational movements of the shell element nodes contribute to the deformation of cohesive elements. The interfacial damage accumulation and final delamination are taken into account by the progressive stiffness degradation of the cohesive elements. The crack growth in double cantilever beam (DCB) and end notch flexure (ENF) specimens are simulated with the proposed elements and corresponding finite element models. The simulation results agree pretty well with the experimental data and those in the literature. In addition, it is shown that the interfacial element can adapt to various mesh shapes.

参考文献

[1] Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Composites Science and Technology, 2008, 68(12): 2383-2390.

[2] Schoeppner G A, Abrate S. Delamination threshold loads for low velocity impact on composite laminates. Composites Part A: Applied Science and Manufacturing, 2000, 31(9): 903-915.

[3] Shyr T W, Pan Y H. Impact resistance and damage characteristics of composite laminates. Composite Structures, 2003, 62(2): 193-203.

[4] Schellekens J C J, de Borst R. Numerical simulation of free edge delamination in graphite-expoxy laminates under uniaxial tension. Proceedings of the 6th International Conference on Composite Structures, 1991, 6: 647-657.

[5] Guan Z D, Liu D B, Li X, et al. Composite interlaminar damage analysis based on cohesive element. Acta Materiae Compositae Sinica, 2012, 29(2): 130-134.(in Chinese) 关志东,刘德博,李星, 等. 基于界面单元的复合材料层间损伤分析方法. 复合材料学报, 2012, 29(2): 130-134.

[6] Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7: 55-129.

[7] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773-781.

[8] Mi Y, Crisfield M A, Davies G A O, et al. Progressive delamination using interface elements. Journal of Composite Materials, 1998, 32(14): 1246-1272.

[9] Alfano G, Crisfield M A. Finite element interface models for the delamination analysis of laminated composites: mechanical and computional issues. International Journal for Numerical Methods Engineering, 2001, 50(7): 1701-1736.

[10] Camacho G T, Ortiz M. Computation modelling of impact damage in brittle materials. International Journal of Solids Structures, 1996, 33(20): 2899-2938.

[11] Frizzell R M, McCarthy C T, McCarthy M A. Simulating damage and delamination in fiber metal laminate joints using a three-dimension damage model with cohesive elements and damage regularisation. Compoiste Science and Technology, 2011,71(9): 1225-1235.

[12] Li Y Z, Guo X B, Huang Z Y. 3D stress analysis of composite laminate based on a kind of interfacial element. Acta Materiae Compositae Sinica, 2009, 26(3): 207-212. (in Chinese) 李亚智, 郭晓波, 黄志远. 基于组合单元的层压复合材料三维应力分析. 复合材料学报, 2009, 26(3): 207-212.

[13] Huang Z Y, Li Y Z, Guo X B. Fatigue life prediction of composite laminates incorporating 3D stress analysis. Acta Materiae Compositae Sinica, 2010, 26(1): 173-178. (in Chinese) 黄志远, 李亚智, 郭晓波. 考虑三维应力的复合材料层压板疲劳寿命分析. 复合材料学报, 2010, 26(1): 173-178.

[14] Camanho P P, Dávila C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737,2002.

[15] Turon A, Davila C G, Camanho P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 2007, 74(10): 1665-1682.

文章导航

/