固体力学与飞行器总体设计

单面螺纹抽钉干涉配合复合材料连接件挤压强度研究

  • 魏景超 ,
  • 矫桂琼 ,
  • 闫照明 ,
  • 刘风雷
展开
  • 1. 西北工业大学 力学与土木建筑学院, 陕西 西安 710129;
    2. 中国商飞 上海飞机设计研究院, 上海 201210;
    3. 北京航空制造工程研究所, 北京 100024
魏景超,男,博士研究生。主要研究方向:复合材料力学及先进复合材料在航空航天结构上的设计与应用。Tel:029-88431027,E-mail:weijingchao66@aliyun.com;矫桂琼,男,教授,博士生导师,兼任中国力学学会常务理事、中国复合材料学会理事。主要研究方向:先进复合材料在航空航天结构上应用的力学问题、复合材料的损伤、断裂及其力学机理、复合材料力学行为的数值模拟及仿真、复合材料的界面力学、复合材料的层间增韧及其机理、多相材料的尺度效应等。Tel:029-88431023,E-mail:jiaogq@nwpu.edu.cn

收稿日期: 2012-09-07

  修回日期: 2012-11-28

  网络出版日期: 2012-12-05

Bearing Strength of Composite Joints Interference-fitted with Blind Bolts

  • WEI Jingchao ,
  • JIAO Guiqiong ,
  • YAN Zhaoming ,
  • LIU Fenglei
Expand
  • 1. School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi’an 710129, China;
    2. Shanghai Aircraft Design and Research Institute, COMAC, Shanghai 201210, China;
    3. Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China

Received date: 2012-09-07

  Revised date: 2012-11-28

  Online published: 2012-12-05

摘要

由于连接技术是复合材料连接结构设计中的关键环节,所以本文通过试验研究了干涉配合对复合材料单钉双剪连接件挤压强度的影响作用,并建立了能预测复合材料连接件挤压强度的三维有限元数值模型。该模型考虑了钉孔接触、渐进损伤以及大变形理论,并采用了Hashin失效判据以及Tan材料性能退化准则,研究了不同干涉量(0%,0.5%,3%)配合方式对连接强度和刚度的影响作用。结果表明适量的干涉能提高连接挤压强度,而3%的过量干涉配合降低了连接挤压强度,却有较高的挤压弦向刚度,与试验结果相比,吻合较好。

本文引用格式

魏景超 , 矫桂琼 , 闫照明 , 刘风雷 . 单面螺纹抽钉干涉配合复合材料连接件挤压强度研究[J]. 航空学报, 2013 , 34(7) : 1627 -1635 . DOI: 10.7527/S1000-6893.2013.0280

Abstract

Since the join technology is the key link of the structural design of composite connection, an investigation is conducted to study the effect of interference fit on the bearing strength of composite single-bolt double-lap joints, and a three-dimensional finite element model is developed to predict the bearing strength of composite bolted joints with different sizes of interference fit, taking into account the bolt-hole connection, progressive damage, and large deformation theory. To predict progressive ply failure, Hashin failure criteria and Tan degradation rules are employed. This model considers the effects of different interference sizes (0%, 0.5%, 3%) on the bearing strength and stiffness of composite joints. Results show that appropriate sizes of interference can improve the bearing strength of joints. However, the joints of 3% excessive interference fit have lower bearing strength and higher bearing stiffness. Good agreement between experimental results and numerical predictions is observed.

参考文献

[1] Conti P. Influence of geometric parameters on the stress distribution around a pin-loaded hole in a composite laminate. Composite Science and Technology, 1986, 25(2): 1-19.

[2] Naik R A, Crews J H. Stress analysis method for a clearance-fit bolt under bearing conditions. AIAA Journal, 1985, 24(3): 1348-1353.

[3] Chen W H, Lee S, Yeh J T. Three-dimensional contact stress analysis of a composite laminate with bolted joint. Composite Structures, 1995, 30(3): 287-297.

[4] Sun H T, Qing X, Chang F K. The response of composite joints with bolt-clamping loads, Part Ⅱ: model verification. Composite Material, 2002; 36(1): 69-91.

[5] McCarthy M A, Lawlor V P, Stanley W F, et al. Bolt-hole clearance effects and strength criteria in single bolt, single lap, composite joints. Composite Science and Technology, 2002, 62(10-11): 1415-1431.

[6] Xiao Y, Ishikawa T. Bearing strength and failure behavior of bolted composite joints, Part I: experimental investigation. Composites Science and Technology, 2005, 65(7-8): 1022-1031.

[7] Liu P, Zhang K D. An experimental study on fatigue life of interference-fit composite joint. Acta Aeronautica et Astronautica Sinica, 1991, 12(12): 546-549. (in Chinese) 刘萍, 张开达. 干涉对复合材料叠层板螺栓连接疲劳强度的影响. 航空学报, 1991, 12(12): 546-549.

[8] Zhang B P, Zhang K D. Fatigue of interference-fit mechanical joint in T300/QY8911 laminate. Acta Materiae Compositea Sinica, 1996, 13(1): 97-100. (in Chinese) 张博平, 张开达. T300/QY8911 π/4层压板机械连接干涉疲劳. 复合材料学报, 1996, 13(1): 97-100.

[9] Chinese Aeronautical Establishment. Composite structures design manual. Beijing: Aviation Industry Press, 2001: 145-175. (in Chinese) 中国航空研究院. 复合材料结构设计手册. 北京:航空工业出版社,2001: 145-175.

[10] Department of Defense. MIL-HDBK-17F Composite materials handbook: Volume 3, polymer matrix composite materials usage, design, and analysis. Philadelphia: Government Publication, 2002: 271-280.

[11] Thoppul S D, Finegan J, Gibson R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures—a review. Composites Science and Technology, 2009, 69(3-4): 301-329.

[12] Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47(2): 329-335.

[13] Xiao Y, Ishikawa T. Bearing strength and failure behavior of bolted composite joints, Part Ⅱ: modeling and simulation. Composites Science and Technology, 2005, 65(7-8): 1032-1043.

[14] Chang F K, Chang K Y. A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Material, 1987, 21(9): 834-855.

[15] Tan S C, Perez J. Progressive failure of laminated composites with a hole under compressive loading. Journal of Reinforced Plastic Composite, 1993, 18(10): 255-278.

[16] Irisarri F X, Laurin F, Carrere N, et al. Progressive damage and failure of mechanically fastened joints in CFRP laminates, Part I: refined finite element modeling of single-fastener joints. Composite Structures, 2012, 94(8): 2269-2277.

[17] ASTM D5961/D5961 M-05 Standard test method for bearing response of polymer matrix composite laminates. Philadelphia: American Society for Testing and Materials, 2005.

文章导航

/