固体力学与飞行器总体设计

热声载荷作用下薄壁结构的非线性响应特性

  • 沙云东 ,
  • 魏静 ,
  • 高志军 ,
  • 赵奉同 ,
  • 鲍冬冬
展开
  • 沈阳航空航天大学航空航天工程学部, 辽宁 沈阳 110136
沙云东 男, 博士, 教授, 硕士生导师。主要研究方向: 航空发动机强度、 振动及噪声。 Tel: 024-89723890 E-mail: ydsha2003@vip.sina.com;赵奉同 男, 工程师。主要研究方向: 航空发动机强度、 振动及噪声。 Tel: 024-89723890. E-mail: ftzhao@sina.com

收稿日期: 2012-07-04

  修回日期: 2012-11-28

  网络出版日期: 2012-12-05

基金资助

航空科学基金(02C54007)

Nonlinear Response Characteristics of Thin-walled Structures Under Thermo-acoustic Loadings

  • SHA Yundong ,
  • WEI Jing ,
  • GAO Zhijun ,
  • ZHAO Fengtong ,
  • Bao Dongdong
Expand
  • Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2012-07-04

  Revised date: 2012-11-28

  Online published: 2012-12-05

Supported by

Aeronautical Science Foundation of China (02C54007)

摘要

高速飞行器面临着严酷的高温强噪声环境。温度载荷不仅使结构产生热应力,还会改变材料的物性参数,这使得薄壁结构在宽频噪声激励下具有复杂的运动形式,表现出强非线性特性,严重影响了结构的疲劳寿命。针对热声载荷对结构非线性特性的影响,建立了热声载荷下的非线性大挠度偏微分控制方程,对偏微分方程使用Galerkin法得到了模态坐标下的常微分方程组。计算了四边简支矩形钛合金板在不同温度和声压级(SPL)组合下的动态响应,得到了典型的热声响应运动形式,包括屈曲前的线性随机振动、屈曲后的跳变运动和围绕一个平衡位置的随机振动。通过分析方程中的恢复力项和响应的功率谱密度(PSD)随着温度和SPL的变化规律,对热声响应的非线性特性进行了研究。研究结果表明,热载荷和声载荷对响应非线性特性的影响方式不同:热载荷改变结构刚度特性曲线的形状,以临界屈曲状态的刚度为参照,屈曲前降低结构刚度,屈曲后增加结构刚度;噪声载荷使得结构工作在刚度曲线的不同区域,以不受载荷时的结构刚度为对照,强噪声载荷引起的持续跳变使得结构工作在硬化区域,间歇跳变时结构工作在软化区域。

本文引用格式

沙云东 , 魏静 , 高志军 , 赵奉同 , 鲍冬冬 . 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013 , 34(6) : 1336 -1346 . DOI: 10.7527/S1000-6893.2013.0234

Abstract

Hypersonic vehicles suffer high intensity acoustic loadings in an elevated temperature. Owning to the temperature loadings, not only will thermal stresses be produced, but the material physical parameters are also changed. The thermal loadings will result in complicated motion forms of thin-walled structures with strong nonlinear characteristics through wide-band noise excitation. The complicated dynamics will decrease the fatigue life seriously. Considering the effect of thermal-acoustic loadings on the structural nonlinear behaviors, a nonlinear partial differential equation of large deflection under thermal-acoustic loadings is derived and then is treated with Galerkin method to obtain an ordinary differential equation under modal coordinates. The thermal-acoustic responses of simply supported rectangular titanium plates with different temperature and sound pressure levels (SPL) combinations are obtained, including random vibration in pre-buckled region, snap-through motion between post-buckled equilibrium positions and nonlinear vibration around one post-buckled position. Then the restoring force term and power spectral density (PSD) characteristics with temperature and SPL are analyzed for further research on nonlinear characteristics. Research results show that thermal loadings and acoustic loadings affect nonlinear characteristics differently. Thermal loadings will change the shape of stiffness curves. Taking the stiffness of critical buckling as standard, thermal loadings can reduce the stiffness of a structure in the pre-buckled region and increase the stiffness in post-buckled region. Due to the influences of acoustic loadings, the structures will work at different stiffness curve regions. Taking the stiffness of the structure without loadings as standard, the structures will work at hardened area while undergoing persistent snap through and work at softened area while undergoing intermittent snap through.

参考文献

[1] Blevins R D, Bofilios D, Holehouse I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure. AFRL-RB-WP-TR-2009-3139. Chula Vista, CA: Goodrich Aerostructures Group, 2009.

[2] Sha Y D, Li J Y, Gao Z J. Dynamic response of pre/post buckled thin-walled structure under thermo-acoustic loading. Applied Mechanics and Materials, 2011, 80-81: 536-541.

[3] Sha Y D, Gao Z J, Xu F. Influence of thermal loading on the dynamic response of thin-walled structure under thermo-acoustic loading. Advanced Engineering Forum, 2011, 2-3: 876-881.

[4] Sha Y D, Xu F, Gao Z J. Nonlinear response of carbon-carbon composite panels subjected to thermal-acoustic loadings. Applied Mechanics and Materials, 2011, 117-119: 876-881.

[5] Guo X P, Sha Y D, Bai S S, et al. Application study of the random sonic acoustic fatigue based on the rain-flow counting and power spectrum density. Journal of Aeroengine, 2010, 36(5): 27-31. (in Chinese) 郭小鹏, 沙云东, 柏树生, 等. 基于雨流计数法和功率谱密度法的随机声疲劳应用研究. 航空发动机, 2010, 36(5): 27-31.

[6] Sha Y D, Guo X P, Liao L F, et al. Probability distribution of von Mises stress for complex thin-walled structures undergoing random acoustic loadings. Journal of Vibration and Shock, 2011, 30(1): 137-141. (in Chinese) 沙云东, 郭小鹏, 廖连芳, 等. 随机声载荷作用下的复合薄壁结构Von Mises 应力概率分布研究. 振动与冲击, 2011, 30(1): 137-141.

[7] Leatherwood J D, Clevenson S A, Powell C A, et al. Acoustic testing of high temperature panels. AIAA-1990-3939, 1990.

[8] Wu Z Q, Ren F, Zhang W, et al. Research advances in thermal-acoustic testing of aerocraft structures. Journal of Missiles and Space Vehicles, 2010(2): 24-30. (in Chinese) 吴振强, 任方, 张伟, 等. 飞行器结构热噪声试验的研究进展. 导弹与航天运载技术, 2010 (2): 24-30.

[9] Ng C F, Clevenson S A. High-intensity acoustic tests of a thermally stressed plate. Journal of Aircraft, 1991, 28(4): 275-281.

[10] Ng C F, Wentz K R. The prediction and measurement of thermo-acoustic response of plate structures. The Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1990.

[11] Vaicaitis R. Nonlinear response and sonic fatigue of national aerospace space plane surface panels. Journal of Aircraft, 1994, 31(1): 10-18.

[12] Lee J. Large-amplitude plate vibration in an elevated thermal environment. WL-TR-92-3049. Wright-Patterson AFB, OH: Flight Dynamics Directorate, Wright Laboratory, 1992.

[13] Lee J. Energy-conserving Galerkin representation of clamped plates under a moderately large deflection. Journal of Sound and Vibration, 2004, 275(3): 649-664.

[14] Chen R X, Mei C. Finite element nonlinear random response of beams to acoustic and thermal loads applied simultaneously. The Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1993.

[15] Dhainaut J M, Guo X Y, Mei C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment. Journal of Aircraft, 2003, 40(4): 683-691.

[16] Rizzi S A, Przekop A. The effect of basis selection on thermal-acoustic random response prediction using nonlinear modal simulation. The proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004.

[17] Rizzi S A, Przekop A. Estimation of sonic fatigue by reduced-order finite element based analyses. The IX International Conference on Recent Advances in Structural Dynamics, 2006.

[18] Spottswood S M, Hollkamp J J, Eason T G. Reduced-order models for a shallow curved beam under combined loading. AIAA Journal, 2010, 48(1): 47-55.

[19] Spottswood S M, Michael S. Identification of nonlinear parameters from experimental data for reduced order models. Cincinnati, OH: Department of Mechanical, Industrial, and Nuclear Engineering, University of Cincinnati, 2006.

[20] Yang X W, Li Y M, Geng Q. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1851-1859.(in Chinese) 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法的高温环境飞行器宽频声振特性分析.航空学报,2011, 32(11): 1851-1859.

[21] Murphy K D, Virgin L N, Rizzi S A. Characterizing the dynamic response of a thermally loaded, acoustically excited plate. Journal of Sound and Vibration, 1996, 196(5): 635-658.

文章导航

/