流体力学与飞行力学

复杂旋翼流场的耦合欧拉-拉格朗日数值方法

  • 魏鹏 ,
  • 史勇杰 ,
  • 徐国华
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 江苏 南京 210016
魏鹏,男,博士研究生。主要研究方向:直升机旋翼尾迹。Tel:025-84892117,E-mail:weipeng@nuaa.edu.cn;史勇杰,男,博士,讲师。主要研究方向:直升机旋翼CFD和直升机旋翼气动噪声。Tel:025-84896444,E-mail:shiyongjie@nuaa.edu.cn;徐国华,男,博士,教授,博士生导师。主要研究方向:直升机空气动力学、旋翼CFD和气动力学。Tel:025-84892117,E-mail:ghxu@nuaa.edu.cn

收稿日期: 2012-09-04

  修回日期: 2012-11-09

  网络出版日期: 2012-11-29

基金资助

中央高校基本科研业务费专项资金(NS2012035)

Coupled Eulerian-Lagrangian Method for Complicated Rotor Flow Field Prediction

  • WEI Peng ,
  • SHI Yongjie ,
  • XU Guohua
Expand
  • Science and Technology on Rotorcraft Aeromechanics Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-09-04

  Revised date: 2012-11-09

  Online published: 2012-11-29

Supported by

The Fundamental Research Funds for the Central Universities

摘要

针对影响旋翼流场求解精度的关键因素"桨叶复杂近体流动"和"尾迹涡畸变",结合计算流体力学(CFD)方法和黏性涡方法,发展了一套适合于复杂旋翼涡流场分析的耦合欧拉-拉格朗日数值方法:为捕捉桨尖三维效应、激波等细节流场特征,在桨叶近体区域采用CFD方法对其进行求解;针对高雷诺数旋翼流场中桨尖涡的紧凑结构特点,引入黏性涡方法建立了高分辨率的尾迹求解模型;两计算域间的信息交换采用了集中涡源法和边界修正法。应用所建立的计算方法,以旋翼CFD标准验证试验(Caradonna-Tung旋翼)为算例,对尾迹影响明显的悬停状态进行了数值模拟,通过对比耦合边界处流场特征及桨叶表面压力系数分布,验证了方法的有效性。此外,还从旋翼尾迹捕捉精度、涡量耗散特征及计算时间等方面对不同计算方法进行了对比分析,结果表明耦合方法可充分发挥CFD和黏性涡方法各自的优点,在旋翼流场数值模拟方面具有独特的优势。

本文引用格式

魏鹏 , 史勇杰 , 徐国华 . 复杂旋翼流场的耦合欧拉-拉格朗日数值方法[J]. 航空学报, 2013 , 34(7) : 1538 -1547 . DOI: 10.7527/S1000-6893.2013.0272

Abstract

A hybrid Eulerian-Lagrangian solver is developed by coupling the computational fluid dynamics (CFD) method with viscous vortex particle method for complicated rotor vortex field analysis. In order to capture the detailed features of a flow field such as its three-dimensional blade tip effect, shock wave, etc., the CFD method is adopted to compute the near-body flow, while a high revolution model is established using the viscous vortex particle method to track the wake since the tip vortex has compact structural characteristics in a high Reynolds number rotor flow field. The "integrated vorticity source method" and the "boundary surface method" are used to exchange the information between the two computational domains. Using the proposed method, a standard test (Caradonna-Tung rotor) for CFD method verification is performed as an example, and numerical simulation is carried out for a hover condition in which the wake plays a more obvious role than in other flight conditions. By comparing the flow characteristics in coupled boundary and pressure coefficient distribution of the blade surface, the validity of the method is verified. Furthermore, different methods are comparatively analyzed from the aspects of the accuracy of capturing the rotor wake, vorticity dissipation characteristics and calculation time. The results show that the hybrid method possesses the advantages of both the CFD method and the Viscous Vortex Particle Method, and has a unique advantage in the rotor flow field numerical simulation.

参考文献

[1] Komerath N M, Smith M J, Tung C. A review of rotor wake physics and modeling. Journal of the American Helicopter Society, 2011, 56(2): 22006-1-22006-19.
[2] Strawn R C, Caradonna F X, Duque E P N. 30 years rotorcraft computational fluid dynamics research and development. Journal of the American Helicopter Society, 2006, 51(1): 5-21.
[3] Yang A M, Qiao Z D. Navier-Stokes computation for a helicopter rotor in forward flight based on moving overset grids. Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 434-436. (in Chinese) 杨爱明, 乔志德. 基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算. 航空学报, 2001, 22(5): 434-436.
[4] Xu H Y, Ye Z Y, Wang G, et al. Numerical simulation of rotor forward flight flow based on the unstructured dynamic patched grid. Acta Aerodynamica Sinica, 2007, 25(3): 325-329. (in Chinese) 许和勇, 叶正寅, 王刚, 等. 基于非结构运动对接网格的旋翼前飞流场数值模拟. 空气动力学学报, 2007, 25(3): 325-329.
[5] Cesnik C E S, Opoku D G, Nitzsche F, et al. Active twist rotor blade modelling using particle-wake aerodynamics and geometrically exact beam structural dynamics. Journal of Fluids and Structures, 2004, 19(5): 651-668.
[6] Brown R E, Line A J. Efficient high-resolution wake modeling using the vorticity transport equation. AIAA Journal, 2005, 43(7): 1434-1443.
[7] He C J, Zhao J G. Modeling rotor wake dynamics with viscous vortex particle method. AIAA Journal, 2009, 47(4): 902-915.
[8] Zhao J G, He C J. A viscous vortex particle model for rotor wake and interference analysis. Journal of the American Helicopter Society, 2010, 55(1): 12007-1-12007-14.
[9] Berkman M E, Sankar L N, Berezin C R, et al. Navier-Stokes/full potential/free-wake method for rotor flows. Journal of Aircraft, 1997, 34(5): 635-640.
[10] Sitaraman J, Iyengar V S, Baeder J D. On field velocity approach and geometric conservation law for unsteady flow simulations. 16th AIAA Computational Fluid Dynamics Conference. Reston: American Institute of Aeronautics and Astronautics, 2003: 1-14.
[11] Stock M J, Gharakhani A, Stone C P. Modeling rotor wakes with a hybrid OVERFLOW-vortex method on a GPU cluster. 28th AIAA Applied Aerodynamics Conference. Reston: American Institute of Aeronautics and Astronautics, 2010: 1-12.
[12] Zhao J G, He C J. A hybrid solver with combined CFD and viscous vortex particle method. American Helicopter Society 67th Annual Forum. Alexandria: American Helicopter Society, 2011:393-406.
[13] Cao Y H, Yu Z Q, Su Y, et al. Combined free wake/CFD methodology for predicting transonic rotor flow in hover. Chinese Journal of Aeronautics, 2002, 15(2): 65-71.
[14] Shi Y J, Zhao Q J, Fan F, et al. A new single-blade based hybrid CFD method for hovering and forward-flight rotor computation. Chinese Journal of Aeronautics, 2011, 24(2): 127-135.
[15] Wei P, Shi Y J, Xu G H, et al. Numerical method for simulating rotor flow field based upon viscous vortex model. Acta Aeronautica et Astronatica Sinica, 2012, 33(5):771-780. (in Chinese) 魏鹏, 史勇杰, 徐国华, 等. 基于黏性涡模型的旋翼流场数值方法. 航空学报, 2012, 33(5): 771-780.
[16] Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal of Computational Physics, 1987, 73(2): 325-348.
[17] Mansfield J R, Knio O M, Meneveau C. Dynamic LES of colliding vortex rings using a 3D vortex method. Journal of Computational Physics, 1999, 152(1): 305-345.
[18] Caradonna F, Tung C. Experimental and analytical studies of a model helicopter rotor in hover. Vertica, 1981, 5(1): 149-161.
[19] Leishman J G. Principles of helicopter aerodynamics. 2nd ed. New York: Cambridge University Press, 2006: 572-573.
文章导航

/