绕跨声速三角翼的激波/涡干扰流场数值模拟
收稿日期: 2012-05-14
修回日期: 2012-09-10
网络出版日期: 2013-04-23
Numerical Simulation of Shock/Vortex Interaction in Transonic Flow Around a Delta Wing
Received date: 2012-05-14
Revised date: 2012-09-10
Online published: 2013-04-23
在绕三角翼的跨声速流动中,随着迎角的增加,三角翼上的涡破裂位置会出现突然前移的现象。针对这一与亚声速下不同的流动现象,采用带曲率修正的Spalart-Allmaras(SAR)湍流模型,求解定常雷诺平均Navier-Stokes(RANS)方程,对不同迎角下绕65°后掠尖前缘三角翼的跨声速流动进行数值模拟,并在此基础上,采用基于SAR湍流模型的脱体涡模拟(DES)方法,对由激波干扰导致的前缘涡破裂位置的运动规律进行了初步探讨。模拟结果与试验结果对比表明:SAR湍流模型能准确地模拟出三角翼上的激波系统和旋涡结构,并能准确模拟出由于激波干扰导致的涡破裂位置突然前移的现象。此外,对涡破裂后流场的非定常数值研究发现,支架前端正激波的干扰作用使得涡破裂位置向下游移动比较突然,而向上游移动则相对缓慢。
李喜乐 , 杨永 , 张强 , 夏贞锋 . 绕跨声速三角翼的激波/涡干扰流场数值模拟[J]. 航空学报, 2013 , 34(4) : 750 -761 . DOI: 10.7527/S1000-6893.2013.0134
It is observed that delta wings placed in a transonic flow can experience a sudden upward movement of vortex breakdown location as the angle of attack is increased, which is different from the case with subsonic flows. To investigate this flow phenomenon, transonic flows around a 65° swept leading edge delta wing are numerically simulated by solving Reynolds average Navier-Stokes (RANS) equations coupled with a rotation corrected Spalart-Allmaras (SAR) turbulence model. In addition to steady simulations, calculations using detached eddy simulation (DES) based on the SAR turbulence model in the time accurate flow are performed, in which the normal shock movements on the top surface of the delta wing and the corresponding leading edge vortex breakdown locations are preliminarily studied. A comparison with experimental data shows that the simulations based on the SAR model simulate the shock wave system and vortex structures accurately, and capture the phenomena of sudden upward movement of the vortex breakdown location due to shock wave interaction. Additionally, the unsteady simulation of post-breakdown flow shows that, because of the interaction of the normal shock ahead of the sting tip, the location of vortex breakdown moves downstream abruptly while the upstream movement is relatively slow.
[1] Schiavetta L A, Boelens O J, Fritz W. Analysis of transonic flow on a slender delta wing using CFD. AIAA-2006-3171, 2006.
[2] Elsenaar A, Hoeijmakers H W M. An experimental study of the flow over a sharp-edged delta wing at subsonic and transonic speeds. AGARD-CP-494, 1991: 15.1-15.19.
[3] Chu J, Luckring J M. Experimental surface pressure data obtained on a 65° delta wing across Reynolds number and Mach number ranges: Volume 1—sharp leading edge. NASA Technical Memorandum 4645, 1996.
[4] Yan C, Li T H, Huang X L. Numerical simulation of separation and vertical flows on delta wings. Advances in Mechanics, 2001, 31(2): 227-244. (in Chinese) 阎超, 李亭鹤, 黄贤禄. 三角翼上分离及涡流的数值模拟. 力学进展, 2001, 31(2): 227-244.
[5] Lu Z Y, Zhu L G. Study on forms of vortex breakdown over delta wing. Chinese Journal of Aeronautics, 2004, 17(1): 13-16.
[6] Hummel D. The international vortex flow experiment 2 (VFE-2): objectives and overview. RTO-TR-AVT-113-P-17, 2009.
[7] Zhou W J, Li F, Wang Y Y. The study of transonic dynamic stall and vortex-breakdown over a delta wing. Acta Aeronautica et Astronautica Sinica, 1996, 17(6): 671-677. (in Chinese) 周伟江, 李峰, 汪翼云. 三角翼跨声速动态失速与涡破裂特性研究. 航空学报, 1996, 17(6): 671-677.
[8] Pang Y, Zhang S H, Zhang H X. Numerical simulation of the vortex breakdown transition over a delta wing in transonic flow. Acta Aerodynamic Sinca, 1999, 17(2): 196-202. (in Chinese) 庞勇, 张树海, 张涵信. 跨声速三角翼旋涡破裂过程的数值模拟. 空气动力学学报, 1999, 17(2): 196-202.
[9] Jiao J, Yang Y, Li X L. Numerical simulation of transonic shock-vortex interaction flow on delta wing using DES. Aeronautical Computing Technique, 2010, 40(6): 72-77. (in Chinese) 焦瑾, 杨永, 李喜乐. 基于DES方法的三角翼激波-涡干扰流场数值模拟. 航空计算技术, 2010, 40(6): 72-77.
[10] Li X L, Yang Y, Jiao J. Analysis of shock and vortex breakdown behavior in unsteady transonic flow on a slender delta wing. Proceedings of 14th Chinese National Symposium on Shock Waves, 2010: 568-574. (in Chinese) 李喜乐, 杨永, 焦瑾. 跨音速三角翼非定常流动中激波与涡破裂位置的运动规律数值模拟研究. 第十四届全国激波与激波管学术会议, 2010: 568-574.
[11] Erickson G E, Rogers L W. Experimental study of the vortex flow behaviour on a generic fighter wing at subsonic and transonic speeds. AIAA-1987-1262, 1987.
[12] Erickson G E, Schreiner J A, Rogers L W. Multiple vortex and shock interactions at subsonic, transonic and supersonic speeds. AIAA-1990-3023, 1990.
[13] Donohoe S R, Bannink W J. Surface reflective visualisations of shock-wave/vortex interactions above a delta wing. AIAA Journal, 1997, 35(10): 1568-1573.
[14] Longo J M A. Compressible inviscid vortex flow of a sharp edge delta wing. AIAA Journal, 1995, 33(4): 680-687.
[15] Donohoe S R, Houtman E M, Bannink W J. Surface reflective visualization system study to vortical flow over delta wings. Journal of Aircraft, 1995, 32(6): 1359-1366.
[16] Kandil O A, Kandil H A, Liu C H. Shock-vortex interaction over a 65-degree delta wing in transonic flow. AIAA-1993-2973, 1993.
[17] Kandil O A, Kandil H A, Liu C H. Supersonic vortex breakdown over a delta wing in transonic flow. AIAA-1993-3472, 1993.
[18] Visbal M R, Gordnier R E. Compressibility effects on vortex breakdown onset above a 75-degree sweep delta wing. Journal of Aircraft, 1995, 32(5): 936-942.
[19] Jobe C E. Vortex breakdown location over 65° delta wings empiricism and experiment. Aeronautical Journal, 2004, 108(1087): 475-482.
[20] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows. AIAA-1992-439, 1992.
[21] Dacles M J, Zilliac G G, Chow J S, et al. Numerical/experimental study of a wingtip vortex in the near field. AIAA Journal, 1995, 33(9): 1561-1568.
[22] Dacles M J, Kwak D, Zilliac G G. On Numerical errors and turbulence modeling in tip vortex flow prediction. International Journal for Numerical Methods in Fluids, 1999; 30(1): 65-82.
[23] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES, 1997.
[24] Lucy A S, Okko J B, Simone C, et al. Shock effects on delta wing vortex breakdown. Journal of Aircraft, 2009, 46(3): 903-914.
/
〈 | 〉 |