材料工程与机械制造

温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响

  • 李晨钰 ,
  • 朱立群 ,
  • 刘慧丛 ,
  • 叶序斌 ,
  • 刘建中 ,
  • 黄颐
展开
  • 1. 北京航空航天大学材料科学与工程学院 空天材料与服役教育部重点实验室, 北京 100191;
    2. 北京航空材料研究院, 北京 100095
李晨钰 女, 硕士研究生。主要研究方向: 航空高强铝合金的腐蚀与防护。 Tel: 010-82317113 E-mail: lichenyu0802@gmail.com;朱立群 男, 教授, 博士生导师。主要研究方向: 材料表面的功能性涂镀层及腐蚀电化学。 Tel: 010-82317113 E-mail: zhulq@buaa.edu.cn;刘慧丛 女, 副教授, 硕士生导师。主要研究方向: 材料的腐蚀及表面的功能性涂镀层。 Tel: 010-82317113 E-mail: liuhc@buaa.edu.cn

收稿日期: 2012-07-04

  修回日期: 2012-08-16

  网络出版日期: 2012-09-29

Influence of Temperature on Initial Corrosion Behavior of Aluminum Alloy 2A12 in Simulated Tank Water Environment

  • LI Chenyu ,
  • ZHU Liqun ,
  • LIU Huicong ,
  • YE Xubin ,
  • LIU Jianzhong ,
  • HUANG Yi
Expand
  • 1. Key Laboratory of Aerospace Materials and Performances, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2012-07-04

  Revised date: 2012-08-16

  Online published: 2012-09-29

摘要

基于飞机油箱舱内的铝合金在油箱积水环境中发生的腐蚀损伤问题,通过研究腐蚀形貌、最大点蚀坑深度、最大点蚀坑开口面积、表面腐蚀损伤度、交流阻抗响应等变化,分析了温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响。研究发现,最大点蚀坑深度、开口面积、表面腐蚀损伤度都随着温度的升高而增加,特别当温度升高到65℃和75℃时,腐蚀严重加剧,各项评价指标显著增大。在25、35、45、55℃模拟油箱积水环境中,最大点蚀坑深度及开口面积随时间的关系呈现幂函数变化规律,而在65℃、75℃时,其遵循最小二乘法多项式拟合。电化学交流阻抗谱测试结果表明,2A12铝合金在3个特征温度(常温25℃、中温55℃及高温75℃)下的腐蚀速度快慢为V75℃ > V55℃ > V25℃

本文引用格式

李晨钰 , 朱立群 , 刘慧丛 , 叶序斌 , 刘建中 , 黄颐 . 温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响[J]. 航空学报, 2013 , 34(6) : 1493 -1500 . DOI: 10.7527/S1000-6893.2013.0245

Abstract

Aluminum alloy corrosion in airplane tank water is a serious problem. The influence of temperature on the initial corrosion behavior of aluminum alloy 2A12 in a simulated tank water environment is studied by observing the corrosion morphology, maximum pitting corrosion depth, maximum pitting corrosion area, surface corrosion damage ratio, EIS, etc. The results indicate that pitting corrosion depth, pitting corrosion area and surface corrosion damage ratio increase with increasing temperature. In particular, at temperatures 65℃ and 75℃, corrosion speed increases dramatically. In the simulated tank water of 25, 35, 45 and 55℃, the variation in maximum pitting corrosion depth and area with time all fit well withthe power function. At temperatures 65℃ and 75℃, they both fit well with the least square polynomial fitting. In addition, EIS indicates that corrosion rate in simulated tank water of three typical temperatures (25, 55, 75℃) increases with temperature increase.

参考文献

[1] Liang Z D. Corrosion of aluminum alloy in aircraft fuel tank compartments due to condensed water. Corrosion, 1992,48(6): 514-517.
[2] Zhu L Q, Li W P, Zhang Q, et al. Galvanic corrosion of high-strength aluminum alloys in the solution simulating the aircraft corrosion environment. Acta Aeronautica et Astronautica Sinica, 1997, 18(1): 32-37. (in Chinese) 朱立群, 李卫平, 张琦, 等. 模拟实际飞机腐蚀介质中高强铝合金材料腐蚀行为研究. 航空学报, 1997,18(1): 32-37.
[3] Zhang Y H, Lu G Z, Chen Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 779-782. (in Chinese) 张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究. 航空学报, 2005,26(6): 779-782.
[4] Huang Y, Liu H C, Zhu L Q, et al. Study on corrosion behavior of 30CrMnSiNi2A steels in simulated tank water environment. Journal of Materials Engineering,2012(4): 88-93. (in Chinese) 黄颐, 刘慧丛, 朱立群, 等. 30CrMnSiNi2A钢在模拟油箱积水环境中的腐蚀行为研究. 材料工程, 2012(4): 88-93.
[5] Zhang D. Corrosion and corrosion control of aircraft structure. Beijing: National Defence Industry Press, 1993: 63-71. (in Chinese) 张栋. 飞机结构的腐蚀与腐蚀控制. 北京: 国防工业出版社, 1993: 63-71.
[6] Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater. Materials and Design, 2008, 29(4): 801-805.
[7] Wu X L, Liu J H, Chen X Y. Surface analysis of aluminum alloys influenced by sulfate-bacteria. Acta Metallurgica Sinica, 1999, 12(5): 867-873.
[8] Yun F L, Xu K. Effect of heavy metal ions on the corrosion of aluminum alloy 5052. Chemical Industry and Engineering, 2010, 27(2):173-176. (in Chinese) 云凤玲, 徐克. 重金属离子对5052铝合金耐蚀性能的影响. 化学工业与工程, 2010, 27(2):173-176.
[9] Khedr M G A, Lashien A M S. The role of metal cations in the corrosion and corrosion inhibition of alumimium in aqueous solutions. Corrosion Science, 1992, 33(1): 137-151.
[10] Sato F, Asakawa Y. Localized corrosion behavior of aluminum-magnesium-silicon alloy in ground water. Corrosion, 1999, 55(5): 522-529.
[11] Huang L C, Liu H C, Gu A. Failure and corrosion of coating on aluminum alloy parts used on airplanes serving in costal environment. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1144-1149. (in Chinese) 黄领才, 刘慧丛, 谷岸. 沿海环境下服役飞机铝合金零件的表面涂层破坏与腐蚀. 航空学报, 2009, 30(6): 1144-1149.
[12] Dan Z H, Muto I, Hara N. Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions. Corrosion Science, 2012, 57(1): 22-29.
[13] Grill R, Baker M A, Castle J E, et al. Corrosion behavior of a 2219 aluminium alloy treated with a chromate conversion coating exposed to a 3.5% NaCl solution. Corrosion Science, 2011,53(4): 1214-1223.
[14] Han D S, Li D. Influence of marine atmosphere humidity on initial corrosion of LY12. Journal of Chinese Society for Corrosion and Protection, 2007, 27(3): 134-136. (in Chinese) 韩德盛, 李荻. 海洋大气湿度对LY12铝合金初期腐蚀的影响. 中国腐蚀与防护学报, 2007,27(3):134-136.
[15] Han D S, Li D. Influence of temperature on initial corrosion of LY12 in marine atmosphere. Materials Protection, 2007,40(6):7-8,19. (in Chinese) 韩德盛, 李荻. 温度对LY12铝合金海洋大气初期腐蚀行为的影响. 材料保护, 2007, 40(6):7-8,19.
[16] Zhu L Q, Gu A, Liu H C, et al. Study on characters of corrosion advancing edge of typical high strength aluminum alloys. Journal of Aeronautical Materials, 2008, 28(6): 61-66. (in Chinese) 朱立群, 谷岸, 刘慧丛, 等. 典型高强铝合金材料的点腐蚀坑前缘特征的研究. 航空材料学报, 2008,28(6): 61-66.
[17] Li T, Feng H T, Li X G, et al. Corrosion behavior of 2A12 aluminum alloy in Cl-containing solution. Materials Science and Technology, 2011, 19(3):43-48. (in Chinese) 李涛, 冯海涛, 李晓刚, 等. 2A12铝合金在含Cl-环境中的腐蚀行为和规律研究. 材料科学与工艺, 2011, 19(3): 43-48.
[18] Paik J K, Lee J M, Ko M J. Ultimate shear strength of plate elements with pit corrosion wastage. Thin-Walled Structures, 2004, 42(8): 1161-1176.
[19] Zhang Y H, Lu G Z, Ren K L, et al. The evolution rhythm of surface corrosion damage of LY12-CZ aluminum in varied environment. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):142-145. (in Chinese) 张有宏, 吕国志, 任克亮,等. 不同环境下LY12-CZ铝合金表面腐蚀损伤演化规律研究. 航空学报, 2007, 28(1):142-145.
[20] Zhu Z T, Mu Z T, Su W G, et al. Corrosion grade evaluation of aluminum alloy based on image processing technique. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 383-386. (in Chinese) 朱做涛,穆志韬,苏维国,等. 基于图像处理技术的铝合金腐蚀等级评定方法. 南京航空航天大学学报, 2010,42(3): 383-386.
[21] Schueller G R T, Taylor S R. Electrochemical impedance analysis and interpretation. USA: ASTM Special Technical Publication 1188, 1993.
[22] Cheng Y L, Zhang Z, Cao F H, et al. A study of corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science, 2004, 46(7): 1649-1667.
文章导航

/