固体力学与飞行器总体设计

纤维桥连对复合材料Ⅰ型层间断裂韧性的影响

  • 张龙 ,
  • 王波 ,
  • 矫桂琼 ,
  • 黄涛
展开
  • 西北工业大学 力学与土木学院, 陕西 西安 710129
张龙 男, 博士研究生。主要研究方向: 复合材料和结构的力学行为。 Tel: 029-88431027 E-mail: zhanglongspring@163.com;王波 男, 博士, 副教授, 硕士生导师。主要研究方向: 复合材料和结构的力学行为。 Tel: 029-88431025 E-mail: b.wang@nwpu.edu.cn;矫桂琼 男, 博士, 教授, 博士生导师。主要研究方向: 先进复合材料在航空航天结构上应用的力学问题, 复合材料的损伤、 断裂及其力学机理, 复合材料力学行为的数值模拟及仿真, 复合材料的界面力学, 复合材料的层间增韧及其机理, 多相材料的尺度效应。 Tel: 029-88431023 E-mail: jiaogq@nwpu.edu.cn;黄涛 男, 博士, 副教授, 硕士生导师。主要研究方向: 复合材料结构力学, 材料科学, 航空航天科学与工程。 Tel: 029-88431026 E-mail: huangt@nwpu.edu.cn

收稿日期: 2012-05-23

  修回日期: 2012-09-21

  网络出版日期: 2013-04-23

Influence of Fiber Bridging on Mode I Interlaminar Fracture Toughness of Composites

  • ZHANG Long ,
  • WANG Bo ,
  • JIAO Guiqiong ,
  • HUANG Tao
Expand
  • School of Mechanics, Civil Engineering and Architecture, Northwest Polytechnical University, Xi'an 710129, China

Received date: 2012-05-23

  Revised date: 2012-09-21

  Online published: 2013-04-23

摘要

采用ASTM D 5528标准对T700/9916复合材料单向板进行了试验,研究了双悬臂梁(DCB)试验中桥连纤维对Ⅰ型层间断裂韧性的影响。根据试验观察,提出桥连区存在单(s区域)、双纤维桥连区域(d区域)的分析模型,其中d区域内一点上桥连纤维的数量是s区域的两倍;通过对桥连纤维和悬臂梁相互作用的分析,推导出呈指数形式递减的单根纤维桥连力-转角函数。由此得到整个悬臂梁的桥连力函数,并对DCB试验进行了分析,得到的模拟曲线与试验曲线吻合较好。研究结果表明本文提出的纤维桥连模型能够真实地反映桥连纤维在裂纹扩展过程中的作用方式。

本文引用格式

张龙 , 王波 , 矫桂琼 , 黄涛 . 纤维桥连对复合材料Ⅰ型层间断裂韧性的影响[J]. 航空学报, 2013 , 34(4) : 817 -825 . DOI: 10.7527/S1000-6893.2013.0141

Abstract

T700/9916 composite laminate specimens are tested according to ASTM D 5528 standards, and the fiber bridging effect on Model I interlaminar fracture toughness is investigated in double cantilever beam (DCB) tests. From experimental observation, a model with single (s zone) and double fiber bridging zone (d zone) is proposed. The number of bridging fibers on a point of the d zone is twice as large as that on a point of the s zone. From an interaction analysis between the bridging fibers and the beam, an exponentially decreasing function of single fiber bridging force versus angle is built. Based on the analysis above, a DCB model involving the bridging force function of the whole beam is established. The simulation results show a satisfactory agreement with test results. The present fiber bridging model reflects how bridging fibers act in the process of crack propagation.

参考文献

[1] Kuwata M, Hogg P J. Interlaminar toughness of interleaved CFRP using non-woven veils: Part 1, Mode-I testing. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1551-1559.

[2] Thanomsilp C, Hogg P J. Interlaminar fracture toughness of hybrid composites based on commingled yarn fabrics. Composites Science and Technology, 2005, 65(10): 1547-1563.

[3] de Moura M F S F, Campilho R D S G, Amaro A M, et al. Interlaminar and intralaminar fracture characterization of composites under Mode I loading. Composite Structures, 2010, 92(1): 144-149.

[4] Jiao G Q, Gao J, Deng Q. Mode I interlaminar fracture toughness of composite. Acta Materiae Compositae Sinica, 1994, 11(1): 113-118. (in Chinese) 矫桂琼, 高健, 邓强. 复合材料的Ⅰ型层间断裂韧性. 复合材料学报, 1994, 11(1): 113-118.

[5] Jiao G Q, Zhao J H, Jia P R. Method of isolated plies for overcoming the effect of fiber bridging on GIC. Acta Materiae Compositae Sinica, 1996, 13(2): 84-88. (in Chinese) 矫桂琼, 赵剑衡, 贾普荣. 克服纤维桥连对GIC影响的隔离层法. 复合材料学报, 1996, 13(2): 84-88.

[6] Liu L, Huang Z M, Zhou Y X, et al. Improvement of Mode I interlaminar fracture thoughness of composites reinforced by ultrathin fibers. Acta Materiae Compositae Sinica, 2007, 24(4): 166-171. (in Chinese) 刘玲, 黄争鸣, 周烨欣, 等. 超细纤维增强复合材料Ⅰ型层间断裂韧性分析. 复合材料学报, 2007, 24(4): 166-171.

[7] Daridon L, Cochelin B, Ferry M P. Delamination and fiber bridging modelling in composite samples. Journal of Composite Materials, 1997, 31(9): 874-888.

[8] Iwamoto M, Ni Q, Fujiwara T, et al. Intralaminar fracture mechanism in unidirectional CFRP composites: Part I, intralaminar toughness and AE characteristics. Engineering Fracture Mechanics, 1999, 64(6): 721-745.

[9] Iwamoto M, Ni Q, Fujiwara T, et al. Intralaminar fracture mechanism in unidirectional CFRP composites: Part II, analysis. Engineering Fracture Mechanics, 1999, 64(6): 747-764.

[10] Jiao G Q, Jia P R. Mechanics of composite materials. Xi'an: Northwestern Polytechnical University Press, 2008: 6-18. (in Chinese) 矫桂琼, 贾普荣. 复合材料力学. 西安: 西北工业大学出版社, 2008: 6-18.

[11] Long Y Q. Calculation of elastic foundation beam. Beijing: Higher Education Press, 1981: 1-86. (in Chinese) 龙驭球. 弹性地基梁的计算. 北京: 高等教育出版社, 1981: 1-86.

[12] D30.06. ASTM D 5528-01 Standard test method for Mode I interlaminar fracture toughness of unidirectional fibre-reinforced polymer matrix composites. West Conshohocken, PA: American Society for Testing and Materials (ASTM), 2001.

[13] Brunner A J, Blackman B R K, Williams J G. Calculating a damage parameter and bridging stress from GIC delamination tests on fibre composites. Composites Science and Technology, 2006, 66(6): 785-795.

[14] Blackman B R K, Kinloch A J, Paraschi M, et al. Measuring the Mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin. International Journal of Adhesion and Adhesives, 2003, 23(4): 293-305.

[15] de Morais A B, de Moura M F, Marques A T, et al. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology, 2002, 62(5): 679-686.

[16] Shokrieh M M, Heidari-Rarani M, Ayatollahi M R. Delamination R-curve as a material property of unidirectional glass/epoxy composites. Materials and Design, 2012, 34: 211-218.

[17] Daridon L, Zidani K. The stabilizing effects of fiber bridges on delamination cracks. Composites Science and Technology, 2002, 62(1): 83-90.

文章导航

/